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ABSTRACT 
In this paper, we describe a new approach for blindly 

separating real environment speech signals with as less 
distortion as possible in the special case where speech signals 
outnumber sensors. Underdetermined BSS is a problem that 
has not yet been intensely studied and so far no satisfying 
solution has been obtained. The major issue encountered in 
previous work relates to the occurrence of distortion, which 
affects a separated signal with loud musical noise. To 
overcome this problem, we propose combining sparseness 
with the use of an estimated mixing matrix. First, we use a 
geometrical approach to perform a preliminary separation 
and to detect when only one source is active. This 
information is then used to estimate the mixing matrix, which 
allows us to improve our separation. Experimental results 
show that this Sparseness - Mixing Matrix Estimation 
(SMME) provides separated signals of better quality (less 
distortion, less musical noise) than those extracted without 
using the estimated mixing matrix.   

1. INTRODUCTION  

This paper focuses on underdetermined blind source 
separation (BSS) of three speech signals mixed in a real 
environment from measurements provided by two sensors. 
This is a tricky problem and no satisfying solution has been 
proposed yet.  

Most of the solutions proposed so far are using the 
assumption of sparseness of speech signals. That is to say, 
they assume that most of the samples of the signals are zero, 
and therefore, they can assume that signals do not overlap so 
often. They utilized binary masks to extract each source. As a 
result of such a rough approach, considerable distortion i.e., 
loud musical noise, can be heard, this is due to discontinuous 
zero-padding.  

 However, we remember that in the determined problem, 
where we have as many sources as microphones, one of the 
common ways of solving the BSS issue was to estimate and 
then invert the mixing matrix modeling the system. But, here, 
where sources outnumber sensors, the mixing matrix is no 
longer square and we cannot use this solution. 

Nevertheless this gives us the idea to combine the 
sparseness properties of the speech signal with an estimation 
of the mixing matrix. To separate more speech than sensors 

with as less musical noise as possible, we propose combining 
sparseness with the use of an estimated mixing matrix. First, 
we use a geometrical approach to perform a preliminary 
separation and to detect when only one source is active. This 
information is then used to estimate the mixing matrix. Then 
we remove one source from the observations and separate the 
residual signals with the inverse of the estimated mixing 
matrix. 
 Experimental results in a real room (TR=130 ms) show that 
our proposed method, which we call Sparseness – Mixing 
Matrix Estimation (SMME), provides separated signals of 
better quality than those extracted by only using the 
sparseness property of the speech signal.  

2. PROBLEM STATEMENTS AND 
NOTATIONS 

In this paper, we consider speech mixtures observed in a 
real room. In this case, as speeches are mixed with their 
reverberation, the observed vectors xj (j=1..M) can be 
modeled as convolutive mixtures of the source signals si 
(i=1..N) as follows: 

 ( ) ∑
=

=
N

i
ijij ttx sh

1

)(*                         (1) 

where hji is the impulse response from a source i to a sensor j.  
In this paper, we deal with a case where N=3 sources and 
M=2 sensors. Moreover, we assume that the source signals 
are mutually independent and sparse: namely signals have 
large values at rare sampling points. We are using the Short 
Time Fourier Transform (STFT) to convert our problem into 
a linear instantaneous mixtures’ problem as well as to 
improve the sparseness of the speech signals [4]. In the time-
frequency domain, our system becomes: 

),()(),( mffmf SHX = where f is the frequency, m the 

frame index,  H(f) the 2 × 3 mixing matrix whose i-j 
component is a transfer function from a source i to a sensor j, 
X(f,m)=[X1(f,m), X2(f,m)]T and S(f,m)=[S1(f,m), S2(f,m), 
S3(f,m)]T, namely the Fourier transformed observed signals 
and source signals, respectively. 

Our aim is to estimate three speech signals from 
measurements provided by two sensors.  
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3. SPARSENESS INQUIRIES 

3.1. SOURCES’OVERLAPPING 
The first definition of sparseness is that the more zero 

samples contained in a source, the more sparse it is, which 
means that the sources overlap at infrequent intervals. 

Figure 1 is a histogram showing the number of sources that 
are simultaneously active. It can be seen that the time points 
where no sources are active are very numerous whereas the 
time points where three sources are active are very 
infrequent. We can infer from these observations that the 
signals are sparse and that the three signals rarely overlap. 

 
Fig. 1: Histogram of the number of active sources: 0, 1, 2 or 3 for 
a male-male-female combination recorded with a reverberation 
of 200 ms and for a DFT size of 512.  

3.2. MEASURE OF OVERLAPPING 
    We investigated the sparseness more closely and 

checked the degree of signal overlap by utilizing a criterion 
called Approximate W-Disjoint Orthogonality (WDO) 
defined by Rickard and Yilmaz [6]. We use a mask: 
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where Yj(f,m) is the STFT of ∑
≠=

=
N

ji1,i
ij (t)s(t)y  i.e. yj(t) is 

the summation of the sources interfering with source j. The 
Approximate WDO is defined as:  

.||),(||/||),(),(||100)( 22
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This measures the percentage rj of source j energy for 
time-frequency points where it dominates the other signals by 
rj % at x dB. From this criterion it emerges that, if we can 
predict the time-frequency points at which a source 
dominates the others by rj % at x dB, we should be able to 
recover rj % of the energy of the original sources. If rj is 
sufficiently large, we can separate signals with small 
distortion and vice-versa.  

For example in Fig. 2, if we want a signal-to-interference 
ratio of 20 dB, only around 50 % of the original power is 
recoverable, which means that almost half the points are 
zero-padded by a mask and such distortion cannot be avoided. 

Moreover Fig. 2 shows that reverberant data have a lower 
Approximate WDO than no-reverberant data. Hence 
separating reverberant data becomes more difficult.  
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Fig. 2: Approximate WDO against the threshold x for a DFT size 
of 512 and a male-male-female combination.  

4. PROPOSED METHOD 
In previously reported methods [2-4], one of the major 

drawbacks was the occurrence of distortion, i.e., musical 
noise. To overcome this issue, we propose a three-step 
method. First, using the sparseness of speech signals, we 
adopt a geometrical approach extracting the time points m 
when only one source is active [1st step], then we estimate 
the mixing matrix [2nd step] and finally we reconstruct the 
signals when two sources are active [3rd step].  

 
• [1st step] Geometrical approach 

 
Fig. 3: Scatter-plots of the mixtures at a frequency of 312 Hz for 
male-male-female combination, a reverberation of 130 ms and a 
DFT size of 512. 
 

This first step consists of detecting the frame indices m 
when only one of the three sources is active for each 
frequency bin  f. 

Scatter-plots of the measurements, as shown in Fig. 3, 
comprise three main lines (if the sources are sparse enough). 
According to Vielva et al. [4], these lines symbolize the 
directions defined by the column vectors of the mixing 
matrix. In other words, they can be seen as a representation 
of each source existing alone. In between two given 
directions, we find the time-frequency points modeling our 
system when two sources (those linked to the above 
directions) are active simultaneously.   

By setting narrow areas each containing only one line, 
such as areas 1, 2 and 3 in Fig. 3, we are able to determine 
when only one source is active. At the same time we can also 
reconstruct the signals for these time-frequency points. This 
is the method exploited in previous works [2, 3, 4]. However, 
as expected by using such a rough approach, the quality of 
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the separated signals is not satisfactory. Since the rate of 
recoverable energy is too low (as shown in Fig. 6), we cannot 
avoid an important zero-padding, which makes the signals 
insufficiently continuous. As a result, considerable distortion 
i.e., loud musical noise can be heard. 

To overcome this lack of quality, we attempt to complete 
our separation using a totally different approach, relying on 
the knowledge of the mixing matrix. 
 
• [2nd step] Estimation of  mixing matrix 

Deville recovers the mixing matrix by estimating a certain 
cross-correlation parameter ratio over time-frequency zones 
where only one source exists [5]. This ratio was then proved 
to be equal to H2i/H1i (i=1, 2, 3). 

In contrast to Deville, here we are working with a  
underdetermined convolutive case, however his approach 
gave us the idea to model our system in the time-frequency 
domain by: 
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(4) 

Therefore, using time points estimated in the first step 
when only Si (i=1, 2, 3) is active, we have: 

⎩
⎨
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m)(f,(f)SHm)(f,Χ

m)(f,(f)SHm)(f,Χ

i2i2

i1i1                                   (5) 

whose ratio X2(f,m)/X1(f,m) provides one of the components 
of the mixing matrix H2i(f)/H1i(f). 
 
• [3rd step] Reconstruction of time-frequency points 

when two sources are active 
At this stage, it should be noted that knowing the mixing 

matrix does not enable us to separate the signals when three 
sources are active. This is because the mixing matrix is not 
square and does not have any inverse. Deville has only 
applied his method to a squared mixing matrix.  
Nevertheless, it is still possible to rebuild the time-frequency 
points when two sources are active, providing that for each 
frequency bin, we know the frame indices for which this case 
occurs. Once more this information is provided by the 
geometrical approach employed in the first step. But this 
time, instead of setting the limits very close to the observed 
directions, we are considering much wider areas so as to 
enclose the points located between two given directions. 
Indeed let us suppose that, for an estimated (f, m) detected 
during the first step, S1(f, m) is null (area 23 in Fig. 3), in this 
area, our system becomes: 
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Now the mixing matrix is square and can thus be 
inverted, leading to H12(f)S2(f,m) and H13(f)S3(f,m): 
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Moreover, in this area, if the signals H12(f)S2(f,m) and 
H13(f)S3(f,m) are not too greatly zero-padded, we expect that 
the distortion of the estimated H12(f)S2(f,m) and H13(f)S3(f,m) 

will not be that large. We proceed in the same way when 
S3(f,m) is null. 

It should be noted that, in Fig.1, we have already 
confirmed that we do not often have three sources active 
simultaneously. 

5. EXPERIMENTS 

5.1. EXPERIMENTAL CONDITIONS  
 

 

 
Fig. 4: Experimental conditions 
 

The recordings were done in a room whose reverberant 
times were TR=130 and 200 ms using a two-element array of 
directional microphones 4 cm apart. The speech signals, 
sampled at 8 kHz, came from three directions: 120° (male), 
90° (male) and 50° (female) and the distance between the 
sources and the sensors was L = 55 cm. The DFT frame size 
was 512 where we can get the sparsest representation [7]. 

5.2. STABILITY OF THE ESTIMATED 
MIXING MATRIX COEFFICIENTS 

 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 5: Representation of the matrix coefficients, male 
(H23(f)/H13(f)) - male(H22(f)/H12(f)) -female (H21(f)/H11(f)) combination, 
DFT size=512, TR=130 ms. 

 
To evaluate the efficiency of our method, we need to know 

about the stability of the mixing matrix we estimated in the 
2nd. In Fig. 5, we plotted the amplitude and phase of the three 
coefficients H2i(f)/H1i(f) (i=1,2,3) in (4). As we can see, our 
estimation offers a great stability in the whole, except for the 
low frequencies, where the time delay between the two 
microphones, which stand very close to each other, is harder 
to calculate with accuracy. However we can observe the 
constant amplitude and the linear phase of the coefficients. 
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5.3. MASK JUSTIFICATION 
Figure 6 justifies our decision to use wide masks. Indeed if 

we use narrow masks (e.g., area 3 in Fig. 3) as in the previous 
method, the recoverable power is only around 45 % with a 
threshold of 10 dB whereas if we utilize wider masks (e.g., 
area 23 in Fig. 3), we can recover over 60 % of this power.  
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Fig. 6: Approximate WDO against the threshold, DFT size=512, 
TR=130 ms.  
 

Consequently the technique using wide areas makes it 
possible to reduce the distortion of the separated signals, 
which was our aim. 

5.4. EVALUATION MEASURES 
To evaluate the separation performance of our method, we 

have chosen to calculate the Signal-to-Interference Ratio 
(SIR) as a measure of separation performance and the Signal-
to-Distortion Ratio (SDR) as a measure of sound quality: 
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where the permutation is solved before calculating SIR and 
SDR, i.e. yi(t) is the estimation of si(t),  and yiSj  is the output 
of the whole separating system at yi when only sj is active and 
sk (k ≠ j) does not exist, and xkSj is the observation obtained 
by microphone k when only sj exists. α  is a constant that 
compensates for the amplitude difference and ϕ  is an angle 

that fits the phase difference between input xkSj  and output 
yiSj. To evaluate of the previous method (sparseness only 
method), we calculated SIR and SDR using both 
microphones’ measurements, and adopted the better values. 

5.5. RESULTS 
Tables 1 and 2 show the results we obtained from our 

measurements. By “sparseness” we imply that we are 
evaluating the performance of our speech signals when we 
are applying the narrow masks. “invH12” means that we are 
applying our mixing matrix to area 12 comprising speech 
signals 1 and 2. Likewise “invH23” means that we are 
applying our mixing matrix to area 23 comprising speech 
signals 2 and 3. Actually, we are comparing the conventional 
method with our SMME method. The results are shown in 
Tables 1 (when TR=130 ms) and 2 (when TR=200 ms).  

 

Table 1: SIR and SDR calculated in dB for different approaches, 
DFT size=512, TR=130 ms 

  SIR1 SIR2 SIR3 SDR1 SDR2 SDR3 

sparseness 15.3 9.9 10.6 8.4 10.3 3.4 

invH12 11.6  3.1   8.7 12.2  

invH23  3.3 7.6   12.5  7.2 
 
Table 2: SIR and SDR calculated in dB for different approaches, 
DFT size=512, TR=200 ms 

  SIR1 SIR2 SIR3 SDR1 SDR2 SDR3 

sparseness 8.6 5.6 11.6 0.9 3.3 1.4 

invH12 4.0 1.3   2.5 4.8   

invH23   0.4 8.9   7.2 4.5 
 

As we can see, the use of our SMME method allows us 
to obtain less distorted signals without suffering from serious 
deterioration in the separation performance (SIR). Moreover 
we performed informal listening tests and it is important to 
note that much less musical noise is heard when separation is 
undertaken using SMME than when only sparseness is used.  

6. CONCLUSION 
We proposed a separation method for use when there are 

more speech signals than sensors by combining a sparseness 
approach and an estimation of the mixing matrix. The first 
experimental results are very encouraging in terms of quality 
and suggest that the SMME is an approach that deserves 
serious investigation.  
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