ABSTRACT

We propose a method for blindly separating real environment speech signals with as less distortion as possible in the special case where speech signals outnumber sensors. Our idea consists in combining sparseness with the use of an estimated mixing matrix. First, we use a geometrical approach to perform a preliminary separation and to detect when only one source is active. This information is then used to estimate the mixing matrix. Then we remove one source from the observations and separate the residual signals with the inverse of the estimated mixing matrix. Experimental results in a real environment (T_R=130ms and 200ms) show that our proposed method, which we call Sparseness – Mixing Matrix Estimation (SMME), provides separated signals of better quality than those extracted by only using the sparseness property of the speech signal.

However we remember that in the determined problem one of the common ways of solving the BSS issue was to estimate and then invert the mixing matrix modeling the system [2,5]. But, here, where sources outnumber sensors, the mixing matrix is no longer square and we cannot use this solution.

Nevertheless this gives us the idea to combine the sparseness properties of speech signals with an estimation of the mixing matrix. First, we use a geometrical approach to perform a preliminary separation and to detect when only one source is active. This information is then used to estimate the mixing matrix. Then we remove one source from the observations and separate the residual signals with the inverse of the estimated mixing matrix. Indeed we can obtain more information about the signals to be separated and hence reduce the zero-padding effect, from which the musical noise originates.

1. INTRODUCTION

BSS is a method for recovering a set of source signals from the observations of their mixtures without any knowledge about the sources themselves nor the mixing process [1]. While dealing with the BSS issue, we can consider different levels of complexity whether the mixing process is seen as an instantaneous mixture or as a convolutive one but also whether the number of sources outnumber or not the number of sensors.

To get closer to the reality, in the speech signal area, the mixing process should be considered as convolutive because speech signals are recorded with their reverberation. Moreover, to be more realistic with the today’s life, we decide to work with more sources than sensors. Here are the reasons why this paper focuses on underdetermined blind source separation (BSS) of three speech signals mixed in a real environment with as less distortion as possible.

This is a tough problem and no satisfying solution has been proposed yet. Most of the solutions proposed so far [2-6] are using the assumption of sparseness of speech signals. That is to say, they assume that most of the samples of the signals are zero, and therefore, they can assume that signals do not overlap very often. Finally they utilized binary masks to extract each source. Such a rough approach leads to considerable distortion i.e., loud musical noise, which is due to discontinuous zero-padding, is heard.

2. PROBLEM STATEMENTS AND NOTATIONS

In this paper, we consider speech mixtures observed in a real room. In this case, as speeches are mixed with their reverberation, the observed vectors \(x_j \) \((j=1..M) \) can be modeled as convolutive mixtures of the source signals \(s_i \) \((i=1..N) \) as follows:

\[
x_j(t) = \sum_{i=1}^{N} h_{ij} s_i(t)
\]

where \(h_{ij} \) is the impulse response from a source \(i \) to a sensor \(j \).

In this paper, we deal with a case where \(N=3 \) sources and \(M=2 \) sensors. Moreover, we assume that the source signals are mutually independent and sparse: namely signals have large values at rare sampling points. We are using the Short Time Fourier Transform (STFT) to convert our problem into a linear instantaneous mixtures’ problem as well as to improve the sparseness of the speech signals [4]. In the time-frequency domain, our system becomes:

\[
X(f,m) = H(f)S(f,m)
\]

where \(f \) is the frequency, \(m \) the frame index, \(H(f) \) the \(2 \times 3 \) mixing matrix whose \(i-j \) component is a transfer function from a source \(i \) to a sensor \(j \), \(X(f,m)=[X_1(f,m), \ldots, X_3(f,m)]^T \) and \(S(f,m)=[S_1(f,m), \ldots, S_3(f,m)]^T \), namely the Fourier transformed observed signals and source signals, respectively.
Our aim is to estimate three speech signals from measurements provided by two sensors.

3. SPARSENESS INQUIRIES

3.1. SOURCES’OVERLAPPING

The first definition of sparseness is that the more zero samples contained in a source, the more sparse it is, which means that the sources overlap at infrequent intervals.

Figure 1 is a histogram showing the number of sources that are simultaneously active. It can be seen that the time points where no sources are active are very numerous whereas the time points where three sources are active are very infrequent. We can infer from these observations that the signals are sparse and that the three signals rarely overlap.

3.2. MEASURE OF OVERLAPPING

We investigated the sparseness more closely and checked the degree of signal overlap by utilizing a criterion called Approximate W-Disjoint Orthogonality (WDO) defined by Rickard and Yilmaz [6]. We use a mask:

\[
\phi_{j,i}(f,m) = \begin{cases}
1 & \text{if } 20 \log(\| S_j(f,m) \|/ \| Y_j(f,m) \|) > x \\
0 & \text{otherwise}
\end{cases}
\]

where \(Y_j(f,m) \) is the STFT of \(y_j(t) \) = \(\sum_{i=r-j}^s S_i(t) \) i.e. \(y_j(t) \) is the summation of the sources interfering with source \(j \). The Approximate WDO is defined as:

\[
r_j(x) = 100 \| \phi_{j,i}(f,m) S_j(f,m) \|^2 / \| S_j(f,m) \|^2 . \tag{3}
\]

This measures the percentage \(r_j \) of source \(j \) energy for time-frequency points where it dominates the other signals by \(r_j \% \) at \(x \) dB. From this criterion it emerges that, if we can predict the time-frequency points at which a source dominates the others by \(r_j \% \) at \(x \) dB, we should be able to recover \(r_j \% \) of the energy of the original sources. If \(r_j \) is sufficiently large, we can separate signals with small distortion and vice-versa.

For example in Fig. 2, if we want a signal-to-interference ratio of 20 dB, only around 50 \% of the original power is recoverable, which means that almost half the points are zero-padded by a mask and such distortion cannot be avoided.

Moreover shows that reverberant data have a lower Approximate WDO than no-reverberant data. Hence separating reverberant data becomes more difficult.

4. PROPOSED METHOD

In previously reported methods [2-4], one of the major drawbacks was the occurrence of distortion, i.e., musical noise. To overcome this issue, we propose a three-step method. First, using the sparseness of speech signals, we adopt a geometrical approach extracting the time points \(m \) when only one source is active \([1^{st} \text{ step}]\), then we estimate the mixing matrix \([2^{nd} \text{ step}]\) and finally we reconstruct the signals when two sources are active \([3^{rd} \text{ step}]\).

First, we investigate the sparseness more closely and check the degree of signal overlap by utilizing a criterion called Approximate W-Disjoint Orthogonality (WDO). We use a mask:

\[
\phi_{j,i}(f,m) = \begin{cases}
1 & \text{if } 20 \log(\| S_j(f,m) \|/ \| Y_j(f,m) \|) > x \\
0 & \text{otherwise}
\end{cases}
\]

where \(Y_j(f,m) \) is the STFT of \(y_j(t) \) = \(\sum_{i=r-j}^s S_i(t) \) i.e. \(y_j(t) \) is the summation of the sources interfering with source \(j \). The Approximate WDO is defined as:

\[
r_j(x) = 100 \| \phi_{j,i}(f,m) S_j(f,m) \|^2 / \| S_j(f,m) \|^2 . \tag{3}
\]

This measures the percentage \(r_j \) of source \(j \) energy for time-frequency points where it dominates the other signals by \(r_j \% \) at \(x \) dB. From this criterion it emerges that, if we can predict the time-frequency points at which a source dominates the others by \(r_j \% \) at \(x \) dB, we should be able to recover \(r_j \% \) of the energy of the original sources. If \(r_j \) is sufficiently large, we can separate signals with small distortion and vice-versa.

For example in Fig. 2, if we want a signal-to-interference ratio of 20 dB, only around 50 \% of the original power is recoverable, which means that almost half the points are zero-padded by a mask and such distortion cannot be avoided.

Moreover shows that reverberant data have a lower Approximate WDO than no-reverberant data. Hence separating reverberant data becomes more difficult.

Fig. 2: Approximate WDO against the threshold \(x \) for a DFT size of 512 and a male-male-female combination.

Fig. 3: Scatter-plots of the mixtures at a frequency of 312 Hz for a male-male-female combination, a reverberation of 130 ms and a DFT size of 512.

This first step consists of detecting the frame indices \(m \) when only one of the three sources is active for each frequency bin \(f \).

Scatter-plots of the measurements, as shown in Fig. 3, comprise three main lines (if the sources are sparse enough). According to Vielva et al. [4], these lines symbolize the directions defined by the column vectors of the mixing matrix. In other words, they can be seen as a representation of each source existing alone. In between two given directions, we find the time-frequency points modeling our system when two sources (those linked to the above directions) are active simultaneously.

By setting narrow areas each containing only one line, such as areas 1, 2 and 3 in Fig. 3, we are able to determine when only one source is active. At the same time we can also reconstruct the signals for these time-frequency points. This
is the method exploited in previous works [2, 3, 4]. However, as expected by using such a rough approach, the quality of the separated signals is not satisfactory. Since the rate of recoverable energy is too low (as shown in Fig. 6), we cannot avoid an important zero-padding, which makes the signals insufficiently continuous. As a result, considerable distortion i.e., loud musical noise can be heard.

To overcome this lack of quality, we attempt to complete our separation using a totally different approach, relying on the knowledge of the mixing matrix.

- **[2nd] step Estimation of mixing matrix**
 Deville recovers the mixing matrix by estimating a certain cross-correlation parameter ratio over time-frequency zones where only one source exists [5]. This ratio was then proved to equal to H_{2i}/H_{1i} ($i=1, 2, 3$).

 In contrast to Deville, here we are working with a underdetermined convolutive case, however his approach gave us the idea to model our system in the time-frequency domain by:

 \[
 \begin{bmatrix}
 X_1(f,m) \\
 X_2(f,m) \\
 \end{bmatrix} = \begin{bmatrix}
 H_1(f) & H_2(f) & H_3(f) \\
 H_1(f) & H_2(f) & H_3(f) \\
 \end{bmatrix} \begin{bmatrix}
 S_1(f,m) \\
 S_2(f,m) \\
 S_3(f,m) \\
 \end{bmatrix}
 \tag{4}
 \]

 Therefore, using time points estimated in the first step when only S_i ($i=1, 2, 3$) is active, we have:

 \[
 \begin{bmatrix}
 X_1(f,m) \\
 X_2(f,m) \\
 \end{bmatrix} = \begin{bmatrix}
 H_1(f) & H_2(f) & H_3(f) \\
 H_1(f) & H_2(f) & H_3(f) \\
 \end{bmatrix} \begin{bmatrix}
 S_1(f,m) \\
 S_2(f,m) \\
 S_3(f,m) \\
 \end{bmatrix}
 \tag{5}
 \]

 whose ratio $X_2(f,m)/X_1(f,m)$ provides one of the components of the mixing matrix $H_2(f)/H_1(f)$.

- **[3rd] step Reconstruction of time-frequency points when two sources are active**
 At this stage, it should be noted that knowing the mixing matrix does not enable us to separate the signals when three sources are active. This is because the mixing matrix is not square and does not have any inverse. Deville has only applied his method to a squared mixing matrix. Nevertheless, it is still possible to rebuild the time-frequency points when two sources are active, providing that for each frequency bin, we know the frame indices for which this case occurs. Once more this information is provided by the geometrical approach employed in the first step. But this time, instead of setting the limits very close to the observed directions, we are considering much wider areas so as to enclose the points located between two given directions. Indeed let us suppose that, for an estimated (f, m) detected during the first step, $S_i(f, m)$ is null (area 23 in Fig. 3), in this area, our system becomes:

 \[
 \begin{bmatrix}
 X_1(f,m) \\
 X_2(f,m) \\
 \end{bmatrix} = \begin{bmatrix}
 H_1(f) & H_2(f) & H_3(f) \\
 H_1(f) & H_2(f) & H_3(f) \\
 \end{bmatrix} \begin{bmatrix}
 S_1(f,m) \\
 S_2(f,m) \\
 \end{bmatrix}
 \tag{6}
 \]

 Now the mixing matrix is square and can thus be inverted, leading to $H_2(f)S_2(f,m)$ and $H_1(f)S_1(f,m)$:

 \[
 \begin{bmatrix}
 H_2(f)S_2(f,m) \\
 H_1(f)S_1(f,m) \\
 \end{bmatrix} = \begin{bmatrix}
 H_1(f) & H_2(f) & H_3(f) \\
 H_1(f) & H_2(f) & H_3(f) \\
 \end{bmatrix}^{-1} \begin{bmatrix}
 X_1(f,m) \\
 X_2(f,m) \\
 \end{bmatrix}
 \tag{7}
 \]

 Moreover, in this area, if the signals $H_{12}(f)S_{2}(f,m)$ and $H_{13}(f)S_{3}(f,m)$ are not too greatly zero-padded, we expect that the distortion of the estimated $H_{12}(f)S_{2}(f,m)$ and $H_{13}(f)S_{3}(f,m)$ will not be that large. We proceed in the same way when $S_{i}(f,m)$ is null.

 It should be noted that, in Fig. 1, we have already confirmed that we do not often have three sources active simultaneously.

5. EXPERIMENTS

5.1. EXPERIMENTAL CONDITIONS

![Fig. 4: Experimental conditions](image)

The recordings were done in a room whose reverberant times were $T_R=130$ and 200 ms using a two-element array of directional microphones 4 cm apart. The speech signals, sampled at 8 kHz, came from three directions: 120° (male), 90° (male) and 50° (female) and the distance between the sources and the sensors was $L = 55$ cm. The DFT frame size was 512 where we can get the sparsest representation [7].

5.2. STABILITY OF THE ESTIMATED MIXING MATRIX COEFFICIENTS

![Fig. 5: Representation of the matrix coefficients, male (H0(f)/H0(f)) - male(H0(f)/H0(f)) -female (H0(f)/H0(f)) combination, DFT size=512, $T_R=130$ ms.](image)

To evaluate the efficiency of our method, we need to know about the stability of the mixing matrix we estimated in the 2nd. In Fig. 5, we plotted the amplitude and phase of the three coefficients $H_{ij}(f)/H_{ij}(f)$ ($i=1, 2, 3$) in (4). As we can see, our estimation offers a great stability in the whole, except for the low frequencies, where the time delay between the two microphones, which stand very close to each other, is harder.
to calculate with accuracy. However we can observe the constant amplitude and the linear phase of the coefficients.

5.3. MASK JUSTIFICATION

Figure 6 justifies our decision to use wide masks. Indeed if we use narrow masks (e.g., area 3 in Fig. 3) as in the previous method, the recoverable power is only around 45% with a threshold of 10 dB whereas if we utilize wider masks (e.g., area 23 in Fig. 3), we can recover over 60% of this power.

Consequently the technique using wide areas makes it possible to reduce the distortion of the separated signals, which was our aim.

5.4. EVALUATION MEASURES

To evaluate the separation performance of our method, we have chosen to calculate the Signal-to-Interference Ratio (SIR) as a measure of separation performance and the Signal-to-Distortion Ratio (SDR) as a measure of sound quality:

\[
\text{SIR}_i = 10 \log \frac{\sum_k y_{ik}^2(t)}{\sum_{j \neq i} \sum_k y_{jk}^2(t)} \\
\text{SDR}_i = 10 \log \frac{\sum_k x_{ik}^2(t)}{\sum_k (x_{ik}^2(t) - \alpha y_{ik}(t-\varphi))^2}
\]

where the permutation is solved before calculating SIR and SDR, i.e. \(y(t) \) is the estimation of \(s(t) \), and \(y_{ik} \) is the output of the whole separating system at \(y_i \) when only \(s_k \) is active and \(s_k \ (k \neq j) \) does not exist, and \(x_{ik} \) is the observation obtained by microphone \(k \) when only \(s_k \) exists. \(\alpha \) is a constant that compensates for the amplitude difference and \(\varphi \) is an angle that fits the phase difference between input \(x_{ik} \) and output \(y_{ik} \). To evaluate of the previous method (sparseness only method), we calculated SIR and SDR using both microphones’ measurements, and adopted the better values.

5.5. RESULTS

Tables 1 and 2 show the results we obtained from our measurements. By “sparseness” we imply that we are evaluating the performance of our speech signals when we are applying the narrow masks. “invH12” means that we are applying our mixing matrix to area 12 comprising speech signals 1 and 2. Likewise “invH23” means that we are applying our mixing matrix to area 23 comprising speech signals 2 and 3. Actually, we are comparing the conventional method with our SMME method. The results are shown in Tables 1 (when \(T_a=130 \) ms) and 2 (when \(T_a=200 \) ms).

As we can see, the use of our SMME method allows us to obtain less distorted signals without suffering from serious deterioration in the separation performance (SIR). Moreover we performed informal listening tests and it is important to note that much less musical noise is heard when separation is undertaken using SMME than when only sparseness is used.

6. CONCLUSION

We proposed a separation method for use when there are more speech signals than sensors by combining a sparseness approach and an estimation of the mixing matrix. The first experimental results are very encouraging in terms of quality and suggest that the SMME is an approach that deserves serious investigation.

7. REFERENCES