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Abstract—In frequency-domain blind source separation (BSS)
for speech with independent component analysis (ICA), a prac-
tical parametric Pearson distribution system is used to model the
distribution of frequency-domain source signals. ICA adaptation
rules have a score function determined by an approximated signal
distribution. Approximation based on the data may produce better
separation performance than we can obtain with ICA. Previously,
conventional hyperbolic tangent (tanh) or generalized Gaussian
distribution (GGD) was uniformly applied to the score function
for all frequency bins, even though a wideband speech signal has
different distributions at different frequencies. To deal with this,
we propose modeling the signal distribution at each frequency
by adopting a parametric Pearson distribution and employing it
to optimize the separation matrix in the ICA learning process.
The score function is estimated by the appropriate Pearson dis-
tribution parameters for each frequency bin. We devised three
methods for Pearson distribution parameter estimation and con-
ducted separation experiments with real speech signals convolved
with actual room impulse responses (Tso = 130 ms). Our
experimental results show that the proposed frequency-domain
Pearson-ICA (FD-Pearson-ICA) adapted well to the charac-
teristics of frequency-domain source signals. By applying the
FD-Pearson-ICA performance, the signal-to-interference ratio
significantly improved by around 2-3 dB compared with con-
ventional nonlinear functions. Even if the signal-to-interference
ratio (SIR) values of FD-Pearson-ICA were poor, the performance
based on a disparity measure between the true score function and
estimated parametric score function clearly showed the advantage
of FD-Pearson-ICA. Furthermore, we confirmed the optimum
of the proposed approach for/optimized the proposed approach
as regards separation performance. By combining individual
distribution parameters directly estimated at low frequency with
the appropriate parameters optimized at high frequency, it was
possible to both reasonably improve the FD-Pearson-ICA per-
formance without any significant increase in the computational
burden by comparison with conventional nonlinear functions.

Index Terms—Convolutive mixtures, Kurtosis, Pearson types I,
IV, and VI, score function, skewness, speech separation.
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I. INTRODUCTION

LIND source separation (BSS) estimates original source
B signals by using only the information provided by ob-
served mixtures. Independent component analysis (ICA) [1]-[3]
is one of the main statistical methods of BSS. The BSS of speech
signals, which is the main topic of this contribution, has a wide
range of applications, including robust noise/speech recogni-
tion, hands-free telecommunication systems, and more comfort-
able hearing aids.

This paper considers the BSS of speech signals in real en-
vironments, namely the BSS of convolutive mixtures. In a real
environment, speech signals are recorded along with their re-
verberation. To separate such complicated mixtures, signals are
usually converted into the frequency domain to form instanta-
neous mixture problems in each frequency bin [4]-[10], and this
is called frequency-domain BSS. Frequency-domain BSS em-
ploys complex-valued ICA for instantaneous mixtures at each
frequency.

An ICA learning rule generally includes the estimation of the
score function [1]-[3]. For instance, tanh is an activation func-
tion used as an estimate of a score function. In fact, there is a
connection between the activation function and the source prior
in terms of maximum-likelihood (ML) estimation terms. [11]
demonstrated the connection between ML-ICA, Natural Gra-
dient and the FastICA algorithm [12], [13] and showed that the
actual score function in FastICA can also be interpreted as a
function that incorporates source prior information. As pointed
out in [11], the selection of the score function performs quite
important role in the ICA algorithm, and the score function
is deeply related to the source priors. To obtain better sepa-
ration performance, we must find appropriate source distribu-
tions for each frequency to realize a more suitable score func-
tion. Since the distributions are unknown in a blind scenario,
approximated distributions are utilized. For speech separation,
a super-Gaussian distribution has been uniformly used as the
score function in all frequency bins, as seen in Fast ICA, which
is one of the most widely used algorithms. To obtain a more effi-
ciently converging version of FastICA, [14] used the constraint
for the residual error variance. Then [15] adapted the shape of
the source distribution to the data. When looking at the distribu-
tions of a speech signal at different frequencies, they are in fact
not similar because they are fat-tailed and skewed according to
each sequence. Therefore, it is preferable to model an appro-
priate distribution for each frequency bin.
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These various fat-tailed and skewed speech distribution
shapes resemble the distribution shapes of the Pearson distri-
bution system [16], which includes several distribution types
for modeling various source distributions. In fact, a Pearson
distribution system applied to ICA (Pearson-ICA) has been
studied [17], and this approach achieved better separation per-
formance than such conventional nonlinear functions as tanh.
Furthermore, a nonparametric ICA approach to estimating the
source distribution was proposed, and its separation perfor-
mance was compared with those of several methods including
Pearson-ICA, Fast-ICA, and Kernel-ICA [18]. However, [17]
and [18] were performed in the time-domain and used arti-
ficial data. In [17], Pearson-ICA was employed to solve the
instantaneous BSS problem of artificial data, but Pearson-ICA
for convolutive mixtures of speech data (i.e., where delay
and filtering are considered) has never been studied. On the
other hand, a generalized Gaussian distribution (GGD)-based
nonlinear score function was employed for time-domain [19]
and frequency-domain [20] speech signals. Since the shape
parameters of GGD can adapt to the distribution shape, the
approach seemed more flexible than a uniform application of
a super-Gaussian distribution; however, these approaches were
always applied to the time domain [19] or applied uniformly
to all frequency bins [20]. Another problem with the GGD
approach is that it cannot model a skewed distribution, which
sometimes appears for speech signals in the frequency domain.

Leaving aside such problems, we focus on a more central
issue: the convolutive BSS problem. As a solution to this
practical problem, we study Pearson-ICA for the frequency-do-
main BSS of speech signals, which can deal with a more
practical issue, namely the convolutive BSS problem. Such a
frequency-domain BSS technique, using a Pearson distribution
that adapts to the actual data distribution shape, has yet to be
developed. Therefore, this article proposes our approach for
applying the Pearson distribution system to frequency-domain
BSS (FD-Pearson-ICA, Frequency-domain Pearson-ICA). We
adapt appropriate Pearson distribution types to the individual
distribution shape of each frequency.

This paper is organized as follows: Section II introduces the
basic framework of the speech BSS that we handle. Section III
outlines a practical parametric Pearson distribution system
that involves applications with real speech data. Section IV
introduces our proposed blind source separation methods.
Section V describes experimental methods and the results of
actual data analysis, based on a performance evaluation in terms
of the signal-to-interference ratio (SIR). In the cases where the
performance comparison obtained by using SIR was unclear,
a disparity measure was applied to compare the parametric
score functions for conventional tanh, GGD and the proposed
FD-Pearson-ICA with a true score function. In addition, we
discuss the computational time problem for running programs,
improving separation performance, and developing more ef-
ficiently expanded methods. Our conclusions are provided in
Section VI

II. BSS OF SPEECH

A. Problem Description

We consider the BSS of speech signals observed in actual en-
vironments, i.e., the BSS of convolutive mixtures of speech. In

separation system

Fig. 1. Frequency-domain speech BSS system (N = M = 2).

such environments, N source signals s;(n) are observed with
their reverberant components at M sensors. Therefore, obser-
vations are modeled as convolutive mixtures

zj(n) =Y hj(p)sin—p+1) j=1,---\M (1)

=1 p=1

where hj;(n) is the P-taps impulse response from source ¢ to
sensor j. Our goal is to obtain separated signals yr(n) k =
1,---, N using only the information provided by observations
xj(n). In this paper, we deal with the case where N = M =
2 (Fig. 1). An investigation of the performance with different
numbers of sources and sensors is beyond the scope of this
paper, although it would be easy to expand our proposed method
for N > M.

This paper employs a frequency-domain approach for con-
verting our problem into a linear instantaneous mixture at each
frequency. In the frequency domain, mixtures (1) are modeled
as

X;(f.m) = Z Hii(£)Si(f,m) @)

where f denotes a frequency and m is the frame index. With
matrices, (2) can be written as

X(f;m) =H(f)S(f,m)

where H(f) is an M X N mixing matrix whose ji com-
ponent is a transfer function from source ¢ to sensor j, and
S(f>m) = [Sl(fvm)v"'sz(fvm)]T and X(fm) =
[X1(f,m), -+, Xa(f,m)]T denote the short-time Fourier
transform (STFT) of sources and observed signals, respec-
tively. In a blind scenario, H( f) and S(f,m) are unknown.

?

B. Previous Method

The separation process can be formulated at each frequency

f
Y(f,m) = W(f)X(f,m) ©)

where Y (f,m) = [Y1(f,m),---,Yn(f,m)] is the estimated
source signal vector and W(f) is a separation matrix. W (f) is
determined so that Y1 (f,m),---,Yn(f,m) become mutually
independent using ICA. After obtaining separated signals (3)
and properly aligning the permutation and scaling ambiguities,
we convert the frequency-domain signal Yy (f,m) into a time-

domain signal by using inverse STFT. /
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The separation matrix is independently estimated at each
frequency. An algorithm based on the natural gradient [21] is
widely used. The adaptation rule of the ¢th iteration is

Wit (F)=Wi(f)+n[I=(@ (Y (f,m)) Y (f,m))] -Wi(f)
“)
where (Y (f,m)) denotes an average with respect to m, H rep-
resents the transpose conjugate, and 7 is the adaptation step size.
Here, ®(-) indicates the score function. If the source distribu-
tions p are known, score functions are defined as [1]-[4], [8]

P (YD)
p (Y1)

where p’(z) = dp(x)/dx,Y is a complex number, |- | indicates
the absolute value, and /Y is the argument. In blind separation,
however, the source distribution cannot be obtained a priori, and
the score function is approximated by a nonlinear function. The
score function tanh is widely used for speech separation be-
cause speech signals have a super-Gaussian distribution [1]-[3]

oY) = exp(j2Y) ®)

(V) = tanh (g|Y'|) exp(j2Y) (6)

where g indicates a shape parameter.
With conventional GGD [20], the score function is repre-
sented by

O(Y) =|V|" " exp(jLY) )

where [ indicates the shape parameter. With a GGD, a Lapla-
cian distribution whose speech closely follows it is defined as
[ = 1, a standard Gaussian distribution as 3 = 2, and a
Gamma distribution as S = 0.5. Previous methods uniformly
applied tanh and GGD [20] to all frequencies f. However, fre-
quency-domain speech signals have various distributions at dif-
ferent frequencies. As references to express differences in dis-
tributions for different frequencies, the upper panels in Fig. 2(a)
and the three panels in Fig. 2(b) show data histograms of abso-
lute values of their STFT at frequency bins for f = 30, 2, 6, in
Fig. 2(a), 150, 300, and 400, in Fig. 2(b), respectively. Here, the
STFT frame size is 512, and the sampling rate is 8 kHz. Each
figure in the upper panels of Fig. 2(a) describes a different dis-
tribution. With Fig. 2(b), even though it appears to show sim-
ilar J-shaped figures, the heights and tails of the distributions
are slightly different. Moreover, the distribution can also depend
on the speakers. Therefore, it is inappropriate to apply a single
score function to all frequencies/speakers in real source separa-
tion stages. To obtain good separation performance, we approx-
imate appropriate source distributions frequency by frequency
to model a more suitable score function. In this paper, we pro-
pose modeling the signal distribution and the score function at
each frequency by a Pearson distribution, which is introduced
in the next section.

III. PRACTICAL APPROACH WITH PEARSON
DISTRIBUTION SYSTEM

To obtain a more suitable score function, we applied the
Pearson distribution system, which is widely used to model
various source distributions. Pearson [16] defined the following
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Fig. 2 (a) Upper three panels: Histograms of the STFT frame (frame size is
512 and sampling rate is 8 kHz). Estimated « values specified the left, middle,
and right histograms as Pearson Types I, IV, and VI distributions, respectively.
Horizontal axis: |Y(f, y)|, vertical axis: frequencies. Lower three panels: the
pdf curves using estimated parameters for Types I (left), IV (middle), and VI
(right), respectively. (b) Histograms for frequency bins f = 150, 300, and
400. The STFT frame size is 512, and the sampling rate is 8 kHz. The patterns
are Type L.

differential equation related to probability density function
p(x):

_P(z) _ bo + b1z ®

p(z)  co+ w4 com?’

Since we have to handle complex random variables, we modify
(8) as

bo + b1]Y|
Co + 61|Y| + CQ|Y|2 ’

RACHN
p (Y1)
Note that form (9) corresponds to the score function (5) of ICA
and we obtain the following score function:
bo + b1|Y]
co + 61|Y| + 02|Y|2

C))

oY) = exp(jLY). (10)

That is, if the coefficients of (9) can be estimated by an appro-
priate method through the observed data in each frequency, we

can obtain a score function to approximate the source distribu-
tion at each frequency.
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Fig. 3. & values calculated by moments of STFT speech data. The top, second,
and third panels indicate calculated s values for combined female and male
speech data, female speech data, and male speech data. The STFT frame size is
512, and the sampling rate is 8 kHz.

The Pearson distribution system mainly employs seven dis-
tribution types, although there are actually 12 types. A prac-
tical approach that uses all types of distribution is reported in
[22]-[24], and its implementation to general data thus became
simpler. First, to discriminate the Pearson type for the given
data, [23] introduced a useful parameter s

(Skew)?(Kurt+3)?

4 (2xKurt—3x (Skew)2—6) (4 x Kurt—3 x (Skew)2()1 N
where Skew = E[(z — E{z})?]/E[(z — E[2])%*/* and Kurt =
E[(z — E[2])*]/E[(z — E[z])?]” for random variable z (E{-}
indicates the expectation of -).

According to [23], the types for kK < 0,0 < kK < 1, and
1 < kare L, IV, and VI, respectively. In Fig. 2(a), the upper and
lower panels on the left show the data histogram and the Type I
probability density function (pdf) that was calculated using the
parameters estimated from the data. The panels in the middle
and on the right show those for Types IV and VI. The distribu-
tion shapes of Type I generally include J and U-shaped figures.
In this case, we can see the J-shaped distribution. In our prelim-
inary consideration of the STFT series of real speech data, we
calculated x values for each frequency bin shown in Fig. 3. The
top, second and third panels show calculated « values for com-
bined speech data for a female and a male speaker, speech data
for a female and speech data for a male, respectively. The distri-
bution of « is largely the same for the three types of speech data.
We see the distribution (0 < x < 1) of Type IV in the very first
frequency range while Type VI for 1 < « rarely appears. Type I
was detected in most frequency bins. This explains why the use
of a single super-Gaussian distribution, such as tanh, can per-
form relatively well in most cases; however, the height and tail
of the J-shaped distribution are different for each bin, as shown
in the panels in Fig. 2(b). Therefore, a single tanh assumption
may not be sufficiently accurate.

Next, the score function is described by a combination of
simple polynomial expressions and distribution parameters that

could be described by sample moments [22], [23]. For Pearson
Type L, IV, and VI distributions, the original pdf and distribution
parameters described by using sample moments are summarized
in Table I. Expanding the expressions to handle complex values,
the score functions for I, IV, and VI are applied such that these
distribution parameters indicate

(p+q=2)|Y |- (p+g—2)a—(p—1)b
V2= (2a+b)[Y [+a(a+b)
X exp(jLY’)
2b[Y |~ 2bji— 2676
Type IV : (V)= YR 2u]Y |- 2+ 72
(c+D)|Y|+(c+1)a+(B-1)
T I:9(Y)=
ype V (Y) [Y]2—(2a—a)|Y|+a(a—«)
X exp(jLY’)

Typel: ®(Y)=-—

exp(jLY’)

(12)

where the distribution parameters of Types I, IV, and VI can be
calculated using the formulae shown in the Appendix. Note that
b without any suffixes in (12) is different from by and b; in (10).
As for making the coefficients {bg, b1, co, c1,c2} of [Y]°, |Y],
and |Y'|? in (10) correspond to the coefficients of [Y'|°, |Y], and
|Y'|? in (12), we can show that

Typel:bp=—(p+q—2)a—(p—1)b, by=p+q—2
co=a(a+b), c;=—(2a+0b), c2=1

Type IV : by = — 2by — 2b6, by =2b
co=—pl+ 72, c1=—2p,c0=1

Type VI: bp=(c+ 1)a+ (6 — o, bi=c+1
co=a(a—a), c1=—-2(a — a), ca=1.

When applying the Pearson system to frequency-domain BSS,
our proposed methods utilize forms (10) and (12) as the score
functions. The methods used to estimate the parameters of (10)
and (12) are provided in the following sections.

IV. PROPOSED METHODS

With FD-Pearson-ICA, we must estimate the parameters of
the score function, defined by (10) or (12). For this, we propose
the following three methods.

1) Method 1: Minimization of Cross-Correlation: In this
method, we use the score function (10) for learning (4), which
is the separation matrix in ICA. To estimate Pearson parameters
{bo(f),b1(f),co(f),c1(f),ca(f)}, we select parameters that
minimize the sum of the absolute values of the off-diagonal
components of [I — (®(Y)YH)] in (4); that is

N N
S [ (Yilsm) Y(fm)|

1=1 j=1+1

13)

where * indicates the conjugate. The off-diagonal components
represent the higher-order cross-correlation of the outputs. If
output signals are well separated, they become mutually inde-
pendent, and the value of (13) becomes 0. On the other hand,
when the separation is incomplete, the absolute value of the off-
diagonal components is far from zero. Therefore, we can use off-
diagonal components as measures of separation performance. In
accordance with this measure, we use a grid search to find the

Pearson system parameters {bo(f), b1(f), co(f),c1(f), c2(f)}
that minimize (13) in an arbitrary range. First, we determined
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TABLE I
PEARSON TYPES I, IV, AND VI DISTRIBUTIONS AND PARAMETERS
Pearson I Pearson IV
Parameter
p:q>1, o<zt
constraints a<x<a+b,b>20
2bSarctan(*—H
b o) Ga),, T(b -+ b8i)T (b — boi)r? SXPi2bIarctan(— )}
TPhr e ST T T N2 20
b"B(p.q) b F(b)l"(b+%)7z2 -y +773
b,
Mean a+—2 b—& +
ptq b-1
b pq 7’ b
Varian e — 4 (—8)?
Hanee (p+q+(p+q) st
1
20q-php+g+1 2b(2b-3)° S
Skewness 2G-ppratl Do 5 T
(p+q+2)/pg {1+(ﬁ§)2}2
b+2 bd ,
326-3){1+—(—
Kurtosis 3(p+g+D{2(¢’ - pg+p*)+ pa(p+9)} @I+, 560
(p+q+3)p+q+2)pgq (2[7_5){1.,.(%5)2}
Pearson VI
Parameter
a>0,>0,m>0
constraints
a"(x—a)’?
(Skewness > 0)
B(f,m)(o+x—a)"*
PDF m f-1
a"(x—a)
(Skewness < 0)
B(B,m)(a+a—x)""
a+ ap (Skewness > 0)
Mean m—1
a-— (Skewness <0)
m—1
2 —
Variance o (m+f-Df
(m=1)"(m-2)
2B+m—-1)Wm-2
———————(Skewness > 0)
(m=3)JB(f+m-1)
Skewness 208 +m—-1Wm=2
(Skewness <0)
(m=3WB(B+m~1)
. 6L{B* +(B+m—1)}(m—2)+ B(B+m—1)(m—1)]
Kurtosis
(m—=4)(m=3)B(B+m-1)

the score functions (10) for the candidates of the parameter sets
{bo(f),b1(f),co(f),c1(f), c2(f)}. For each parameter set, we
estimated an unmixing matrix using (4) and obtained separated
signals with (3). We compared the off-diagonal component (13)
for all unmixing matrices and we select the parameter set that
achieves the minimum off-diagonal component. In practice, to
avoid the complexity of the parameter grid search, we can ex-
press (10) on the Type IV form and freely search the parameter
set within the theoretical range shown in Table L.

2) Method 2: Estimation of Appropriate Pearson Distribu-
tion Type: This method directly decides the appropriate Pearson
type and Pearson parameters for each frequency bin by using
(11) and (12). Ideally, in (12), the Pearson parameters based

on sample moments should be estimated from a source signal.
However, we cannot use source signals in our blind scenario.
Therefore, to estimate the sample moments, we propose using
pre-separated signals. With this method, we estimate the pre-
separation matrix by the previous ICA method and set the matrix
as the initial value for FD-Pearson-ICA. As the pre-separation
method, we can use any separating method, including Fast-ICA
[12], [13] and ICA (4) with conventional tanh in (6). We label
these methods Method 2-f and Method 2-t, respectively. With the
separated signal Y (f, m) obtained from the initial separation
matrix, we calculate sample moments and detect the Pearson
type. The concrete calculation procedure in each frequency is
organized as follows.
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1) Estimate separation matrix W ( f) in advance by Fast-ICA
or the algorithm using (6) [4], and use it as the initial value
Wo(f) = W(f).

2) Calculate x (see (11)) by the skewness and kurtosis of the
absolute value of Y (f, m) obtained with (3).

3) Following «, the appropriate Pearson distribution type is
specified, and the parameters of the score function defined
in (12) are calculated by the moments of the STFT frame
series | Y (f, m)| according to the Appendix.

4) Renew W(f) by (4).

5) Iterate procedures 3) and 4) until there is a convergence of
4).

Compared with Method 1, the computational burden is light-
ened since it is unnecessary to perform a grid search.

3) Method 3: Combining Methods I and 2: In Fig. 3, the
values vary for the lower frequency bins (until 100 frequency
bins). On the other hand, at higher frequency (over 100 fre-
quency bins), the x values are similar among the bins. More-
over, in a preliminary investigation, we found that individual
histograms related to the frequencies of the estimated parame-
ters bo(f), b1(f), co(f), c1(f), and co(f) have similar tenden-
cies for all speaker combinations at higher frequencies. Based
on this fact, we propose another method that combines Methods
1 and 2. First, we determine the boundary frequency fq. Then,
the score function in frequency ranges lower than fy is always
estimated by Method 2, and the fixed pre-estimated average ob-
tained by Method 1 for each parameter of (10) is applied to
the score function in frequency ranges higher than fy. To as-
sure generality, we prepared the averaged parameters obtained
by applying Method 1 to a limited number of data combinations.
Concretely:

1) calculate the mean values {bo(f),b1(f),%0(f),
c1(f),c2(f)} of the parameters estimated by applying
Method 1 to arbitrary data combinations such as signals
of the combined speech of a female and a male, or the
combined speech of two females;

2) define fy as the boundary point;

3) for low frequencies f < fo, apply 3) of Method 2 ac-
cording to the appropriate Pearson type for each frequency
bin based on « in (11);

4) for high frequencies f > fy, input averaged parameters
{bo(f),b1(f),C0(f),C1(f),C2(f)} for each bin directly
into (10).

To choose the best fj in advance, we compared the SIR values
when using fo between 0 and 200 bins and selected the f that
provided the highest SIR. The methods that employ Methods
2-fand 2-t for f < fy are indicated as Methods 3-f and 3-t,
respectively.

V. EXPERIMENTAL RESULTS

A. Experimental Conditions

We conducted separation experiments with real speech sig-
nals and measured room impulse responses. The speech data
were convolved with impulse responses measured in an actual
room (Fig. 4) whose reverberation time was 130 ms. As original
speech, we used Japanese sentences spoken by male and female
speakers. We then made observation signals with (1) and inves-
tigated four combinations of speakers. The length of the speech

4.45m

Loudspeakers
(height : 1.35 m)

355m
N
N
o
3
IS
0
3
h

~N
~
175 m ( 49
l mni-directional microphones

(height : 1.39 m)
Room height : 2.50 m

Fig. 4. Room layout used for experiments.

data was 3 s. The STFT frame size was 512, and the frame shift
was 256 at a sampling rate of 8 kHz. To solve the permutation
problem of frequency-domain ICA, we employed a direction of
arrival and correlation approach [10], and to solve the scaling
problem we used the minimum distortion principle [25]. For nu-
merical analysis, we arranged four data sets: female and female
(f&f), two types of female and male (f&mI, 2) combinations,
and male and male (md&m).

With these methods, we used the signal-to-interference ratio
(SIR) as a separation performance measure

> on Yii(n)
Zk;&i (>, vik (”))2

where y;(n), is a target signal si(n)-oriented component at
. N
yi(n), thatis, y;(n) = Y, _; yir(n).

To compare the FD-Pearson-ICA methods with other non-
linear functions applied to the score function, we considered
conventional tanh and the GGD-based nonlinear functions [20].
The score function for tanh is described in (6). For the family of
GGD-based non}inear score functions (7), we searched for the
best parameter J from the range 0.5 < 3 < 1.0 and uniformly
defined it in all frequency domains, as in [20].

SIR; = 10log,

(14)

B. Results

Table II summarizes the results we obtained using Methods
1, 2, and 3, conventional tanh, and GGD-based modeling
methods for the four types of data sets. With our proposed
FD-Pearson-ICA approach, in terms of improved separation
performance, we obtained maximum values that were around
3.5 dB better than with conventional tanh and around 2.5 dB
better than with conventional GGD. Although the results vary
depending on the combination of speakers, on average our
proposed FD-Pearson-ICA achieves better performance than
conventional tanh and GGD.

For conventional nonlinear functions, the GGD-based mod-
eling method was slightly better than tanh. The performance
differences are also confirmed in [20].

Method 1 using a grid search worked well for data combina-
tions f&m?2 and f&f. The m&m combination in Methods 1 and
2-fand f&m2 in Method 2-f performed poorly. For these results,
we will introduce another criterion to enable us to compare our
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TABLE II
SIR (dB) VALUES OBTAINED WHEN EMPLOYING CONVENTIONAL tanh, GGD , AND FIVE FD-PEARSON-ICA METHODS

tanh GGD
mé&m 17.71 17.76 (8=0.6)
f&ml 15.92 15.89 (8 =0.6)
f&m?2 14.99 1722 (B=05)
f&f 17.27 17.76 (5 =0.7)
average 16.47 17.16
Method 1 Method 2-f Method 2-t Method 3-f Method 3-t
m& m 17.00 13.68 17.54 17.77 18.12
f&ml 15.99 17.63 16.38 18.54 16.42
f&m?2 18.61 14.58 17.08 18.09 18.38
f&f 20.12 19.08 18.62 20.24 19.43
average 17.93 16.24 17.41 18.66 18.08

proposed Method 2-f with conventional methods. Also, the aver-
aged SIR value in Method 2-t indicated better performance than
the conventional tanh and GGD-based approaches.

The separation performance obtained with Method 3-f and
Method 3-t was 14% and 9.6%, respectively, better than that
obtained with Method 2. Compared to the estimation of whole
frequencies, the discrimination of distribution types by x seems
to work particularly well within the lower frequency domain. In
this experiment, the averaged parameters used in Method 3 were
estimated by using only two data combinations, f&m?2 and f&f,
where the separation performance achieved by Method 1 was
better than that for other combinations, and thus these parame-
ters were utilized for all combinations. That is, the parameters
averaged by the estimations of two data combinations (f&m2
and f&f) were directly applied to m&m and f&mli. However,
the low SIR value for m&m when employing Method 2-f was
clearly improved by around 4 dB by employing Method 3-f.
Therefore, the results related to Method 3 suggest that using
parameters pre-estimated by Method 1 at high frequencies pro-
vided better performance, while the parameters estimated with
data moments worked well at low frequencies.

C. Discussion

Table II clearly shows that our proposed Methods 3 by
FD-Pearson-ICA are better than the above conventional tanh
and GGD. On the other hand, Methods 2 have lower SIR values
compared to tanh and Method 1. Accordingly, we investigated
the disparity between the distributions for separated signals
obtained with the conventional methods, Methods 2-f and ¢, and
the true score function. Let nn be the length of the speech signal
and s(n) = (s1(n),s2(n))T, n = 1,---,nn as a vector of
known signals, while assuming it is obtained from a true score
function. Also, let the vector of two separated signals obtained
from the parametric score function by tanh, GGD, Method
2-for Method 2-tbe y(n) = (y1(n),y2(n))T,n = 1,---, nn.
In our problem, we approximate the distribution by using
the signal amplitude histogram. For known signals s;(t) and
$2(t) and for separated signals y;(t) and y=2(t), we describe
the histograms, and compare the configurations. Fig. 5 shows
an example that compares the configuration disparities of the

histograms. The number of bins in the histogram was 21. In this
case, the white and gray bars show the frequency occurrence
for a female speech signal and for a separated signal from the
combination f&m2 by tanh, respectively. As shown by the
solid and dotted lines, there were certain differences between
the signals. These differences express the distribution disparity
between signals obtained by parametric and by true score
functions. To investigate the configuration disparities of the
histogram, we defined the following measure:

J
Blss i yn) = 3 [Ha, () = Hy, ()] (15)
j=1

where .J denotes the total number combining each interval of
the histogram, and H;, (j) and H,, (j) describe the occurrences
at the jth interval in the histograms of s; and ;. Table III sum-
marizes the B-values for tanh, GG D, and Methods 2-f and 2-t.
The separated signals of channels 1 and 2 obtained from tanh,
GGD, and Methods 2-f and 2-t are represented by ¢ and 5,
g1 and g2, pr1 and pygo, and p;, and py,, respectively. Table 11T
clearly shows that B-values indicate that the distribution of the
separated signals by Methods 2 was closer to distribution of true
signals. That is, the score functions estimated by Methods 2-f
and 2-t were closer to the true value than those estimated by
tanh and GG D. Hence, the B-values show that our approach is
superior.

For parameter estimation in Method 1 and Method 3, the ac-
curacy only relies on the optimization procedure. We have es-
timated the parameters within theoretical range of the Pearson
distribution. Concerning the procedure, we can follow the shape
for improvement of estimation in each grid, that is, we can con-
firm whether optimum values are estimated or not, or the local
minimum exists or not. Since we considered Method 1 with only
grid search procedure to be insufficient for parameter estima-
tion, we proposed Methods 2 and 3 including the procedure that
could previously predict the parameters from the distribution
type.

Furthermore, we pose two primitive questions: “What perfor-
mance can we obtain if the shape parameter of GGD is estimated
for each frequency?” Moreover, “If we use the averaged param-
eters calculated by the known impulse responses and separa-
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TABLE III
COMPARISON USING B-VALUES FOR tanh, GG D, Method 2-f AND Method 2-t

m&m

f& ml

f& m2 f&f average

4 7114

5889

7114 7430 6443.5

tanh
t, 5644

7066

5720 6834 6316.0

g 5291

5887

7088 7182 6362.0

GGD
2 5626

7058

5386 6886 6239.0

3823
Method 2—f pﬂ

4671

5712 5978 5046.0

4312

6036

4106 5980 5108.5

Py 4245

4831

5826 6014 5229.0

Method 2-t

P 4342

5884

4270 5838 5083.5

12000 T

10000 -

8000}

6000 -

4000}

Occurrences of frequency

2000

0 " .
-0.5 0 0.5

Fig. 5. Histograms for separated signals (white bars: histogram for the orig-
inal speech signal of a female. The dotted line traces the configuration of the
histogram; gray bars: histogram for separated speech signal by tanh. The solid
line traces the histogram configuration.)

tion series as the supervised data, we can obtain the optimum of
FD-Pearson-ICA. What is the level of its performance?” To deal
with these questions, we experimentally examined three more
methods, as described below as follows.

1) GGD-ef: Estimation of GGD-Based Score Function for
Each Frequency Bin: The shape parameter (3 in (7) is calcu-
lated for each frequency. To consider the optimum usage of the
GGD-based score function for each frequency bin, we utilized
source signals s;(n) and room impulse responses h;;(n). This
implies supervised non-blind source separation. We selected an
adequate value (3 for 0.5 < (8 < 1.0 with which the best SIR
was obtained at each frequency. This method is labeled GGD-ef.

2) Supervised: Usage of Supervised Impulse Responses: To
confirm the best performance of the FD-Pearson-ICA approach,
we calculated the SIR under supervised non-blind assumptions.
As in Method 4 above, we assume that we know source signals
si(n) and room impulse responses h;;(n). It should be noted
that this is a completely non-blind speech separation method.
We conducted this experiment to determine the optimum per-
formance with Method 1. With this method, we use the score
function defined in (10) and selected the Pearson system param-
eters {bo(f),b1(f),co(f),c1(f),c2(f)}, with which the best

SIR was obtained at each frequency f by performing a grid
search in the appropriate range. This method is labeled Super-
vised.

3) Method 3-s: Method 3 Using Learned Averaged Param-
eters: We applied the Supervised method to two data combi-
nations previously used in Method 3 and averaged parameters.
Using the averaged parameters at high frequencies with the Su-
pervised method and those at low frequencies with the Method
2-f calculation, we conducted separation procedures for all data
combinations. This method is labeled Method 3-s.

The results for the above three methods are summarized in
Table IV. GGD-ef, which adopted the score function for each
frequency, provided a greater improvement than conventional
tanh or GGD shown in Table II. With the GGD method, esti-
mation of the shape parameter for each frequency bin improved
the results over the previous GGD method that applied the es-
timation uniformly to all frequency bins [20]. This fact sug-
gests that adopting the score function for each frequency bin is
an efficient way to improve separation performance. This ten-
dency may apply not only to the GGD method but also to the
FD-Pearson-ICA method. Considering this result and the su-
pervised performance, we suggest that an approach that models
each data distribution shape is efficient for BSS. In Supervised
cases with FD-Pearson-ICA, the SIR values indicated the best
performance of all the methods. This condition achieved a cer-
tain optimum separation performance, and it may further im-
prove if the search range is expanded. Also, we should note that
the optimum performance could be estimated by another super-
vised procedure. In this experiment, Method 3-s provided good
performance using the learned mean parameters. It should be
noted that this method applies a model learned from only two
combinations to all combinations. This suggests that learned pa-
rameters obtained with a small data set perform well for the open
data (for the entire data set). In addition to the method used to
calculate the optimum separation performance, we plan to con-
sider how a priori knowledge of sources may influence the pro-
posed approach in different ways.

Summarizing, the above results, we found that 1. The op-
timum separation performance with FD-Pearson-ICA is better
than that with GGD; 2. Methods 1 and 3, which are blind,
are better than supervised non-blind GGD; 3. The optimum
separation performance with Method 3 (Method 3-s) was
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TABLE IV
SIR (dB) VALUES OBTAINED WHEN EMPLOYING THREE METHODS FOR THE GGD-BASED SCORE FUNCTION ESTIMATED FOR EACH FREQUENCY
BIN: (GGD-ef), SUPERVISED APPROACH (Supervised), AND COMBINED APPROACH (Method 3-s) OF Supervised AND Method 3-f

GGD-eft Supervised Method 3-s
m & m 18.12 20.78 18.04
f&ml 15.85 19.62 18.57
f&m?2 17.53 19.34 18.30
f&f 18.10 19.44 20.24
average 17.40 19.80 18.79
near that of Method 3-f, that is, Method 3 can be considered TABLE V

effective for separation. Consequently, we believe that the
proposed FD-Pearson-ICA is a superior method for solving the
frequency-domain BSS problem, although these results were
only obtained with four pairs of speakers and the supervised
parameters obtained with two pairs of speakers. These are pre-
liminary findings and so we need to conduct more experiments
using different pairs of speakers if we are to realize a complete
BSS method. Naturally, when the number of speakers involved
increases, the computational complexity regarding the learning
of the separation matrix equally increases. In our case, since
we handle the data within frequency domain, the complexity
caused by the number of the sample does not change. In the
cases we have proposed FD-Pearson-ICA, we have to estimate
the parameters of the Pearson distribution. The number of
the parameter is equal to M. Consequently, the computational
complexity would increase in terms of O(M) adding to the
general complexity by the number of speakers.

Furthermore, we considered the required computational time
for performing these methods. We obtained results using a
Matlab profile report, which we have summarized in Table V.
In this case, the CPU clock speed was 594 MHz. Methods that
applied conventional nonlinear functions to the score function
were faster than Methods 1 and 2; however, by reducing the op-
timization procedure, Method 3 could perform at a reasonable
computation speed, thus improving performance.

VI. CONCLUSION

To achieve frequency-domain separation matrix estimation
with ICA, we proposed a practical parametric Pearson distri-
bution system for the source distribution at each frequency,
which could detect the score function. We first confirmed the
efficiency of applying the Pearson system to frequency-domain
speech BSS under blind conditions with three methods: esti-
mating unknown parameters to minimize the cross-correlation
of the separation matrix, directly calculating the transform
formulas based on x discrimination, and a combination of these
two methods. The proposed approach significantly improved
the separation performance, compared with conventional
tanh and GGD-based modeling approaches. Regarding the
parametric score functions of conventional tanh, GGD and
FD-Pearson-ICA, the use of a distance measurement showed
that FD-Pearson-ICA was closest to the true score function.
Through experiments using the proposed FD-Pearson-ICA
and GGD-based approaches applied at each frequency, we

COMPUTATIONAL TIME FOR PERFORMING CONVENTIONAL NONLINEAR
FUNCTIONS AND FD-PEARSON-ICA METHODS

Applied function Time [sec]

Conventional tanh 10.38
nonlinear GGD-based 18.09
functions GGD-ef 91.94

Method 1 6888.66
Method 2f 52.06
Method 2t 55.44
FD-Pearson-ICA Method 3f 16.70
Method 3t 17.12

Supervised 8141.70
Method 3-s 19.07

confirmed that modeling each different distribution shape for
each frequency bin is a useful technique as a frequency-domain
BSS method. That is, modeling based on the data information
was superior as regards separation performance. We have
analyzed signal synthesized for real sounds and room impulse
response but our approach should also be examined for natural
environments.

APPENDIX

The distribution parameters used in (11) are shown here.
These parameters are transferred from the sample moments
shown in Table I. A detailed derivation can be seen in [22]-[24].

Pearson Type I:

6 {Kurt — (Skew)? — 1}
"~ 6+ 3 x (Skew)2 — 2 x Kurt
- r(r+2) (Skew)?
ry ==
T2 2 (Skew)2(r + 2)2 + 16(r + 1)
ol r(r+2) (Skew)?
) 2 (Skew)2(r + 2)2 + 16(r + 1)
max[rs,r4] (Skew > 0)
min(rg,rs] (Skew < 0)
mln[r37r4] (Skew > 0)
max[rs, 4] (Skew < 0)
)

Vi 1 b
b:(p—l—q)\/ arx(;;;—q—l— ) a:Mean—}qu.
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Pearson Type IV:

946 x (Skew)? — 5 x Kurt
"~ 6+ 3 x (Skew)2 — 2 x Kurt

/Var x {4(2b — 3) — (Skew)2(b — 2)2}
T =

b

2
5= V' Var x Skew X (b —1)(b — 2)
N 2br
boéT
=Mean — .
I ean —
Pearson Type VI:

6 {Kurt — (Skew)? — 1}

" 76+ 3 x (Skew)? — 2 x Kurt
. (r—2) N r(r+2) (Skew)?
D 2 (Skew)2(r 4 2)2 + 16(r + 1)
(r—2) r(r+2) (Skew)?
Ty = -
2 2 2 (Skew)2(r 4 2)2 + 16(r + 1)
B = max[ri,re] +1, ¢= —minf[ry,rs] —

Var x (¢ — 1)%(¢ — 2)
! (c+B-1)B
) Mean — :—31 (Skew > 0)
“~ ] Mean + C_ﬂl (Skew < 0).
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