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ABSTRACT 

This paper describes a new method for blind speech separation 
(BSS) of convolutive mixtures. Our approach is based on a 
widely used speech enhancement method called beamforming. 
We utilize this technique for BSS by combining a beamformer 
and a time-frequency binary mask (TFBM) in one system. We 
propose two different approaches using the same basis but 
with a different setup. The first approach is designed for 
(over-)determined configurations, i.e. the number of sensors is 
equal to or greater than the number of sources. The second 
approach is designed for underdetermined configurations, i.e. 
the sources outnumber the sensors. Experimental results show 
that the proposed approach provides better results than the 
sole use of a conventional TFBM or a conventional beam-
former. 

1. INTRODUCTION 

BSS aims to separate speech signals from their mixtures 
without any a priori information about the source posi-
tion, room acoustics, mixing processes etc. Speech sepa-
ration methods can be distinguished into two groups 
according to applicability for only an (over-)determined 
case, or for both (over-)determined and underdetermined 
cases.  
A well known representative of (over-)determined meth-
ods is independent component analysis ICA [1,2]. ICA is 
a statistical BSS method relying only on statistical inde-
pendence of the source signals. Another possible (over-
)determined approach is a multiple-beamformer. Beam-
former [3] performs spatial filtering by forming a direc-
tivity pattern of an array with M sensors in order to em-
phasize a target signal sk(t) arriving from a given direc-
tion and to suppress signals arriving from other direc-
tions (jammers). In order to separate N sources, a set of 
N different beamformers must be employed. However, 
this method may also be used for an underdetermined 
case but the jammer suppression is not efficient because 

only M-1  minimums (null patterns) can be designed in a 
directivity pattern. 
The critical problem of set of multiple-beamformers or 
of beamformer itself is that the speech separation is not 
blind, because beamformer needs a priori information 
about the target signal sk(t), e.g. a mixing vector or at 
least its approximation (steering vector). 
Time-frequency binary mask (TFBM) [4,5] is a BSS 
approach that can be applied even to an underdetermined 
case because the TFBM method relies on time-frequency 
sparseness. However it has a musical noise problem due 
to zero padding in the time-frequency domain. 
In this paper, we present a BSS method that overcame 
the above mentioned limitations. Our method removes 
and significantly reduces musical noise for (over-
)determined and underdetermined cases, respectively. 
This is achieved by combining multiple-beamformers 
and TFBM. We use TFBM for mixing vector estimation 
in order to make multiple-beamformers blind. Further-
more, TFBM is exploited for reducing the number of 
jammers so that only M-1 jammers are included in the 
signal mixtures at the beamformer input even in the un-
derdetermined case. Beamformer then separates the tar-
get signal, thus the musical noise is reduced. 

2. MIXING MODEL AND CONVENTIONAL 
APPROACHES 

2.1. Mixing Model 

We consider M sensors observing N sources as convo-
lutive mixtures 
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where xj(t) is the signal observed by the j-th microphone, 
t is the discrete time index, sk(t) is the k-th source signal 
and hjk(t) represents the impulse response from the k-th 
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source to the j-th sensor. The mixing model (1) in the 
time-frequency domain becomes  

N

1
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k
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≈ ∑x h  (2)

where x(f,τ)=[ x1(f,τ),…, xM(f,τ)]T is an observation vec-
tor and hk(f)=[ h1k(f),…, hMk(f)]T is the vector of the im-
pulse responses (mixing vector). If the source signals 
are sparse, which holds for speech signals [5], the 
sources rarely overlap in the time-frequency domain and 
(2) can be approximated as 

( , ) ( ) ( , ),k kf f s fτ τ≈x h  (3)
where sk(f,τ) is the dominant source at the time-
frequency point (f,τ). 

2.2. Conventional beamformer 

A beamformer is a set of filters wjk(f) that perform spa-
tial filtering. The enhanced output signal in the time-
frequency domain is obtained as  

 T( , ) ( ) ( , ),k ky f f fτ τ= w x  (4)
where wk(f)=[w1k(f),…,wMk(f)]T. We describe the mini-
mum variance (Frost) beamformer [3]. The filters wjk(f) 
are designed by using 
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where H is the complex conjugate transpose, * is the 
conjugation, Rk(f)=E[x(f,τ)x(f,τ)H] is the correlation 
matrix of observation vector x(f,τ), and E[] is the mean 
operator. ak(f) is a steering vector representing an ap-
proximation of hk(f) for an anechoic environment 

1 Mj2π j2π( ) e ,..., e ,k kf f
k f τ τ− −⎡ ⎤= ⎣ ⎦a  (6)

where τjk is the time delay between the arrival of sk(t) at 
sensor j and at reference sensor J. τjk is dependent on the 
target location, the sensor array geometry and the 
propagation velocity c. However, it is difficult to deter-
mine a precise steering vector due to the misalignment 
of the sensor array or reverberation in a real situation. 
Instead of ak(f), we can employ hk(f), which contains the 
correct array geometry and reverberation information. 
Moreover, Rk(f) can be substituted by the correlation 
matrix of the observation vector in the jammer only 
period ( )k fR . These changes both result in improved 
performance. However, the hk(f) measurement is not 
realistic in practice and furthermore the estimation of 
the jammer only period constitutes a difficult problem 
especially when the jammers are non-stationary signals. 

2.3. Conventional TFBM 

A conventional TFBM is shown in Fig. 1. The principle 
of the TFBM is introduced in [4, 5] and therefore we 
describe the TFBM briefly here. First, the time domain 

mixtures xj(t) are transformed into the time-frequency 
domain by the short-time Fourier transform (STFT). 
Observation vector x(f,τ) is then normalized so that it 
forms clusters corresponding to individual sources sk(t). 
Normalization is undertaken in block NORMAL by 
selecting reference sensor J and counting 
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where dmax is the maximal distance between the refer-
ence sensor J and sensor {1,..., M}j ∈  and 
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Figure 1. Time-frequency binary mask (TFBM). 

 
Normalized vector T

1( , ) [ ( , ),..., ( , )]Mf x f x fτ τ τ=x  is 
then clustered in order to find N clusters C1,…,CN cor-
responding to individual source signals. Note that the 
number of sources N must be known beforehand. Clus-
tering is achieved by minimizing the objective function  
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where dk(f,τ) is the distance from the normalized vector 
( , )f τx  to the cluster centers ck=[ c1k,…, cMk]T  T *( , ) 1 real( ( , ) ).k kd f fτ τ= − x c  (10)

ℑ  is minimized by the following updates 
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where CE[]
k∈x  is the mean operator for the members of a 

cluster Ck. The vector of separated target signals 
T

1 N( , ) [ ( , ),..., ( , )]f y f y fτ τ τ=y is obtained by 
P( , ) ( , ) ( , ),k ky f M f x fτ τ τ=  (13)

where P {1,...,M}∈  is an arbitrary sensor index and 
Mk(f,τ) is a time-frequency binary mask extracting the 
time-frequency points of cluster Ck. 
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Finally, the vector of the separated target signals 
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( , )f τy  is transformed back into the time domain by 
inverse STFT (ISTFT). 

3. PROPOSED APPROACH FOR                 
(OVER-) DETERMINED CASE 

Figure 2 shows the flow of our method. The time do-
main mixtures xj(t) are first transformed into the time-
frequency domain by STFT. Observation vector x(f,τ) is 
the beamformer and TFBM input. The function of the 
TFBM, the jammer selection (JS) block, and the correla-
tion (CORR) block is to estimate the jammer correlation 
matrix ˆ ( )k fR and ˆ ( )k fh  or ˆ ( )k fa , where ^ stands for 
estimated value. Finally, the vector of the separated 
target signals y(f,τ)=[ y1(f,τ),…, yN(f,τ)]T is transformed 
back into the time domain by ISTFT. 
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Figure 2. Proposed method for (over-)determined case. 

 
Jammer correlation matrix ˆ ( )k fR estimation: 
In contrast to a conventional TFBM (13), we compute 
the separated signal matrix 1ˆ ˆ( , ) [ ( , ),...,f fτ τ=y y  

Nˆ ( , )]f τy where Tˆ ( , ) ( , ) ( , )k kf M f fτ τ τ= =y x  
T

1 Mˆ ˆ[ ( , ),..., ( , )]k ky f y fτ τ . The separated signal matrix 
ˆ ( , )f τy is needed in order to satisfy the requirement of 

M channel signals for beamformer design. The jammer 
signals T

1 Mˆ ˆ ˆ( , ) [ ( , ),..., ( , )]k k kf n f n fτ τ τ=n  are estimated 
in the JS block as  

N

b=1,

ˆ ˆ( , ) ( , ).jk jb
b k

n f y fτ τ
≠

= ∑  (15)

Finally, Hˆ ˆ ˆ( ) E( ( , ) ( , ) )k k kf f fτ τ=R n n is counted in the 
CORR block.  
 
Mixing vector ˆ ( )k fh  estimation: 
In our approach, we extend the TFBM to estimate the 
mixing vector ˆ ( )k fh or steering vector ˆ ( )k fa . This is 
possible because the cluster centroids ck, obtained 
through the normalization and clustering process, repre-
sent an estimation of mixing vector hk(f) [6]. This can 
be derived from (3), (7), (8) and (12) as 

CE[ ( , )] E[ ( )] ,
kk k ff fτ ∈= =xc x h  (16)

where ( )k fh  is a normalized mixing vector. As regards 
(16), the mixing vector can be obtained through back-
normalization by using (8) and (7) 

1
max J

ˆ ( ) exp j2π d c arg( ) .
M
k

k kf f −⎡ ⎤= −⎣ ⎦
c

h c c  (17)

Steering vector ˆ ( )k fa  (6) can also be derived by substi-
tuting the time delay 1

max Jˆ d c arg( ),k k
−=τ c c obtained 

from (17), where 1 Mˆ ˆ ˆ[ ,..., ]k k kτ τ=τ . 

4. PROPOSED APPROACH FOR 
UNDERDETERMINED CASE 

The method proposed in the previous section may also 
be used for an underdetermined case but it results in low 
signal-to-interference ratio (SIR), see (19), as described 
in section 1. In order to achieve a high SIR, our under-
determined approach implements a jammer reduction, 
which reduces the number of jammers N  in the signal 
mixtures at the beamformer input, so that N=M-1. The 
flow of our proposed method is shown in Fig. 3.  
 
Jammer reduction: 
In Fig. 3, the JS block counts the reduced jammer signal 
mixture vector 1 Mˆ ˆ ˆ( , ) [ ( , ),..., ( , )]k k kf n f n fτ τ τ′ ′ ′=n  and 
the estimated (pre-separated) target signal ˆ ( , )k f τy  that 
should be enhanced by the beamformer. The reduced 
jammer signal mixture ˆ ( , )jkn f τ′  is a summation of 
N=M-1  jammer signals estimated by the TFBM.  The 
jammer reduction is achieved by  

N

b=1, , z

ˆ ˆ( , ) ( , ),
j

jk jb
b k b

n f y fτ τ
≠ ∉

′ = ∑  (18)

where N Mz {1...N}j
−∈ is a set of N-M jammer indexes. 

Jammer indexes zj represent jammer signals that should 
not be included in ˆ ( , )jkn f τ′ . Jammer indexes are deter-
mined by the selection criterion. Different selection cri-
teria can be used. In our approach we select the jammer 
signals with the fewest cluster members in order to 
minimize musical noise. 
The beamformer input ˆˆ ˆ( , ) ( , ) ( , )k k kf f fτ τ τ′= +x n y is 
the summation of the reduced jammer mixture ˆ ( , )k f τ′n  
and the estimated target signal ˆ ( , )k f τy . 
Beamformer design is then based on the reduced jam-
mer correlation matrix Hˆ ˆ ˆ( ) E[ ( , ) ( , ) ]k k kf f fτ τ′ ′ ′=R n n  
and on the estimated mixing vector ˆ ( )k fh  or estimated 
steering vector ˆ ( )k fa . 

5. EXPERIMENTS 

We performed experiments for both determined (M=3, 
N=3) and underdetermined (M=3, N=4) cases in a room 
with a reverberation time of 120 ms, see Fig. 4. The 
source signals were 5-second English and Japanese 
speeches. The STFT frame size was L=512, frame shift 
L/4 and the sampling frequency fs=8 kHz. Separation 
performance was evaluated by the SIR and signal-to-
distortion ratio (SDR) 
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Figure 3. Proposed method for underdetermined case. 
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where yi(t) are the jammer components that appear in the 
output target signal, yk(t) is the output signal without any 
contribution from the jammers and P ( )kx t =  

P ( ) ( )k kl
h l s t l−∑ . Coefficients α and D compensate the 

amplitude and delay, respectively.  
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Figure 4. Room setup. 

 
Table 1 shows the separation results for the determined 
case (D), when sources S1, S2 and S3 were used, and for 
the underdetermined case (UD). We used different BSS 
approaches in order to compare them. A conventional 
beamformer (CB) was designed as described in section 
2.2, namely using steering vector ak(f) with given target 
locations and observation correlation matrix Rk(f). Note 
that separation is not performed blindly. The conven-
tional TFBM setup corresponds to the approach outlined 
section 2.3. Finally, we used our proposed method, 
which exploits ˆ ( )fh , ˆ ( )k fR  and ˆ ( )fh , ˆ ( )k f′R  in the D 
and UD cases, respectively.  
The CB setup did not achieve good results because the 
jammer only correlation matrix ˆ ( )k fR  was not used 
and furthermore the steering vector ak(f) could not re-
flect the room reverberation or sensor misalignment. 
The TFBM achieved higher SIR and SDR values than 

the CB but the zero padding in the time-frequency do-
main means that we hear large musical noise, especially 
in the UD case. On the other hand, the proposed meth-
ods achieve higher separation performance with much 
less and without musical noise for UD and D cases, re-
spectively. Furthermore, the limitations of the conven-
tional approaches, described in section 1, are overcome. 
 

 Table 1. Experimental results for 3 microphone setting. 
Average SIR [dB] Average SDR [dB]Design 

Method D UD D UD 
CB 5.1 2.3 7.3 7.2 

TFBM 10.9 9.6 10.6 9.0 
Proposal 14.6 9.3 13.6 10.8 

6. CONCLUSION 

We introduced a new BSS approach for both (over-
)determined and underdetermined cases by assuming 
source sparseness. Our method combines beamformers 
and TFBM and provides with better separation per-
formance than conventional techniques. Because the 
beamformer is the core of the separation, the musical 
noise is significantly reduced and removed in underde-
termined and (over-)determined cases, respectively. Fur-
thermore, the computation time is not significantly in-
creased revealing the potential for real time application.  
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