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ABSTRACT

The goal of this contribution is a new algorithm using inde-
pendent component analysis with a geometrical constraint.
The new algorithm solves the permutation problem of blind
source separation of acoustic mixtures, and it is significantly
less sensitive to the precision of the geometrical constraint
than an adaptive beamformer. A high degree of robustness
is very important since the steering vector is always roughly
estimated in the reverberant environment, even when the
look direction is precise. The new algorithm is based on
FastICA and constrained optimization. It is theoretically
and experimentally analyzed with respect to the roughness
of the steering vector estimation by using impulse responses
of real room. The effectiveness of the algorithms for real-
world mixtures is also shown in the case of three sources
and three microphones.

1. INTRODUCTION

For many signal processing tasks, such as speech recogni-
tion, transmission, or classification of signals, a very good
reconstruction of the target signal is essential when the tar-
get signal is disturbed by other sources. Adaptive beam-
formers (ABF) and blind source separation (BSS) are very
effective tools for multichannel signal reconstruction.

Although the utility of ABFs is well established [1], they
have limited robustness against erroneous parameters. This
is very troublesome since the steering vector is always roughly
estimated in a reverberant environment, as is shown in this
paper. The methods traditionally used to overcome this
sensitivity mostly broaden the directivity pattern, resulting
in a trade-off between the signal suppression performance
and the parameter sensitivity (e.g., [2]).

Independent component analysis ICA is an emerging tech-
nique for finding independent components in a multi-channel
signal. The main application is BSS which has been shown
to be capable of recovering multiple sources from their lin-
ear mixture if the sources are independent [3].

In the field of acoustics, convolutive mixtures need to
be separated, which involves estimating of many more pa-
rameters (see [4] for contributors) than a separation of a
scalar mixture. Most approaches simplify the problem to
instantaneous separation problems for the frequency com-
ponents. The scaling and permutation ambiguities left in
the recovered frequency components become a serious prob-
lem, particularly when the number of sources and micro-
phones becomes larger than two. Different permutations of
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the frequency components lead to mixed outputs and de-
graded separation results. There are several approaches to
overcome this problem, however, they are restricted to two
sources. Hence, the number of real-world applications in
the acoustics field is still very limited, and the separation
performance is mostly insufficient.

Current publications indicate an equivalence between ABF
and BSS, e.g., [5],[6]. BSS is only an intelligent set of ABF's
with an adaptive null directivity aimed in the direction of
the unnecessary sounds, which have been employed by [7].
This equivalence suggests an application of a geometrical
constraint on ICA to solve the permutation and scaling
problem.

Geometrically constrained algorithms have been proposed
by [8]-[10]. Their contributions do not assess in detail how
a rough estimation of the steering vector effects the perfor-
mance of the algorithms. They only employ the constraint
with the assumption that it is estimated correctly. This as-
sumption is very limiting because precise information about
the steering vector is very difficult to obtain. The major ad-
vantage of using ICA and geometrical information appears
when only a rough estimation is possible. Furthermore,
their algorithms are rather slow iteration type algorithms.

This paper proposes a new geometrically constrained ICA
algorithm that employs the fast convergence properties of
the FastICA algorithm [3]. We also analyze the behavior of
geometrically constrained ICA algorithms in general with
respect to a rough estimation of the constraint. In Sec. 2,
we make basic assumptions on the mixture, ABF and BSS
algorithms, and analyze the possible reasons for a rough
estimation of the steering vector. The new algorithm is
introduced and assessed theoretically and experimentally
in Sec. 3.

2. BLIND SOURCE SEPARATION AND
ADAPTIVE BEAMFORMERS

2.1. Signals and BSS algorithm

In a set s®(t) = [sgarget(t), sb(t),..., S?N,l(t)]T of broad-
band sources, the first source is the target sound and the
others are interfering sources. The sound is measured with
an array of M microphones x°(t) = [z4(¢),..., 2% )]~
The observed signals are filtered and mixed because the
room acoustics impose a different impulse response A%,
between each source s% and each microphone z?2,.

In the frequency domain, the convolutive mixture can
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be written as x/ = H/ - s/ + n/, where x/ is a narrow-
band signal component filtered from x” with a band pass
centered at f. For simplicity, the index f is omitted here-
after. H = [hi,..., hy] consists of the steering vectors
hy, where h; is the steering vector of the target sound.
Only under anechoic conditions, they can be approximated
by the phase shifts caused by the time delays 7, with
h, = [e/?™/mn . ei?m/mMn]T When considering echoes
and reverberation, h, is the sum of all echo paths.

The goal of the algorithms discussed here is to find an
optimal estimation yi(t) of the target signal siqrget. To
achieve this goal, an unmixing matrix W or a coefficient
vector wi is applied to the vector of observations as follows:

y=W-x y=wi x, (1)

where ()¥ is the hermitian (conjugate transposed).

Blind source separation uses ICA to estimate the unmix-
ing matrix W = [w1,...,wn]¥ by making the output sig-
nals as independent as possible. Essentially, ICA has two
steps (W = T# . V). In the first step (sphering), the ma-
trix V is determined by the principle component analysis
(PCA). In the second step (rotation with T'), maximization
of nongaussianity, nonlinear decorrelation, non-stationary
decorrelation, or spatio-temporal decorrelation can be used
to determine the rotation matrix T [3].

2.2. ABF with an imprecise estimation of the steer-
ing vector

An ABF minimizes the power of the output signal with a
constraint: the energy of a signal coming from the direc-
tion of the target is passed without changes w{{hl = c1.
This means that the source position has to be known in
advance. It can be estimated by sound localization meth-
ods (e.g., MUSIC [1]), determined by image processing, or
simply known by geometry.

A major drawback of ABFs is that they rely on the cor-
rect estimation of the steering vector. Since the impulse
response of a room is normally not available, the steering
vector by is estimated by time delays of the direct sound
only. An estimation error of h; is caused by two reasons:
a wrong position or direction of arrival, or the existence of
strong reverberations. The latter reason is due the multiple
directions of arrival while only the direct sound is used for
the estimation. The estimation becomes rough even when
the source position might be well known. )

To determine the error made by a rough estimation of h;,
we introduce a new measure: the steering vector error angle
(SVA) p. For its definition, we use a generalized cosine
cos(x,y) = ||x7y||/|Ix]|]ly|| to define the angle between
two complex vectors x and y. Let u(f) be the angle between
h;(f) and h;(f) and let a(f) be the angle between the
mixing vectors hi(f) of the target signal and h,(f) of the
jammer signal.

H{ H 5
u(f) = cos ™ (—ﬂl‘l‘f”*lfllln) a(f) = cos! (—ﬂfjf”ﬁ‘uh) (@)

Figure 1 shows the SVA p for a real room (sampling rate
8 kHz, distance between the microphones d = 4 cm, direc-
tion of arrival # = 30°, FFT size: 1024). h; is approxi-

mated by [1,..., eﬂ’T'(M*l)d'c‘)S(o)%] (distance between mi-
crophones d = 4 ¢cm), and h; is the actual impulse measured
in real environments with different reverberation times (for
the database see Sec. 3.3). As seen in figure 1, in the case
of a reverberant environment, a much stronger SVA can oc-
cur in some frequency bins than the SVA caused by a rough
estimation of the source position.

500 1000 1500 2000 2500 3000 3500
Freauencv in Hz

(a) Incorrect estimation Af = 20°, Tr = 0 ms

0|

500 1000 1500 2000 2500 3000 3500
Frequency in Hz

(b) Correct estimation Af = 0°, T = 128 ms

Figure 1: SVA p induced by a rough estimation (Af = 20°)
and reverberation. The effect of reverberation exceeds the
effect of an imprecise estimation (solid line). The critical
angle (see Sec. 3.2) of this mixture is shown as a dashed
line.

3. GEOMETRICALLY CONSTRAINED ICA

3.1. Derivation of new algorithm

The algorithm is based on negentropy maximization (3)
proposed by [3]. In this approach, the negentropy is ap-
proximated by the nonlinear function G() with the deriva-
tion g(). As usual in ICA approaches, a PCA is applied
first. Figure 2 shows a scatter plot of the sphered signals
z = Vx. After sphering, we have the following equations:

arg min E{G/(|t{'2/")} 3)

with a constraint to the target signal:
W{{fll = t{{VBl =C1 (4)

Although most BSS algorithms claim to be unconstrained
(using (3) only), they normally employ the assumption that
T = [t1,---,tn]" is unitary and, therefore, t; has a unit
length. This assumption is necessary to avoid a convergence
to the point of origin and to reduce the dimensionality of
the optimization problem since it can be done on the unit
hyper sphere.
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To combine BSS with the constraint, we have to weaken
the assumption because a strict assumption collides with
the constraint (Fig. 2). The column vectors of T need to
be unitary, but they do not have to have a unit length. A
degeneration solution is avoided by the constraint.

According to [3], the Kuhn-Tucker points of (3) are

E{z-g(t"2)} = Bt (5)

when the derivation is done on the unit circle [t|* = 1.

We can also use this condition for points of t that are not
on the unit circle. If t is a Kuhn-Tucker point on the unit
hyper sphere, then t' = vt (for any ) is a Kuhn-Tucker
point of Lagrangian that constrains the solution to vectors
of the same norm. According the theory of FastICA, the
maximal nongaussianity only says something about the di-
rection of the unmixing vector while the norm is not deci-
sive. We are looking for the vector that satisfies the con-
straint (4) and has the highest negentropy of all vectors
with the same norm.

Hence, we do not change the solution of (5) by projecting
it to the constraint. We obtain the following algorithm,
with the convergence illustrated in Fig. 2.

k1 _ _ E{zg(t{ 2)} + Bts
C T YT Blua)y + 5 ©
B Htk+l” 7)
|tk+1Vh1|
_ E{tiz-g(ti'z)}

Assumption of
common FastICA -

I Solution of the new 'algjqrithrﬁ' )

-2 -1 0 1 2 3 4

Figure 2: Convergence of the constrained FastICA algo-
rithm. The constrained ICA algorithm starts at the solu-
tion of the ABF and converges on the constraint line to the
correct solution.

The new algorithm starts with t® =&, = Vh;. If the es-
timation of h; is correct, the estimation itself is already the
correct solution. Then, the algorithm converges according
to (6)-(8) to a saddle point of Lagrangian. Since it does not

indicate whether it is a minimum or maximum of the cost
function, an additional maximality check is introduced into
the algorithm.

Local Minima

Starting point =
s Global minimum
- 15} convergence

Starting point of the

“1o0 -5 0 5 10 FHo = ) 5 10
t, Y

(a) Correct estimation, (b) Incorrect estimation,
pn=0° a=27° p=12° a =27°

Figure 3: Cost function on the constraint

3.2. Theoretical assessment

The Newton method guarantees the algorithms to converge
against a saddle point of the Lagrangian. Figure 3(a) shows
that there is only one global minimum in the case of a pre-
cise estimation of the steering vector h;.

When the estimation becomes rough, two local minima
and a local maximum appear (Fig. 3(b)). The two minima
belong to the two signals. This means that since conver-
gence is ensured, the algorithm converges either towards
the target or the jammer. A convergence to the jammer
signal enforces the jammer signal and suppresses the target
signal. This is equivalent to the permutation problem of
the unconstrained BSS.

The shape of the Lagrangian and the starting point of
the iteration control the convergence. A convergence can
be guaranteed when t, = Vh, is closer to the correct solu-
tion t; than to the permutated solution t» because it is in
convergence range of ti.

In following, we derive a condition for the SVA p and
the mixing matrix that ensures that € is close enough to
t1. Thereto, we define angles ¢, and pi, between &1 and
t1, and €1 and t2, respectively, and we restrict ourselves
to N = M = 2 and equivalent contributions from both
sources.

Let R = E{xx™} be the spatial covariance matrix of
the observed signals. Since it is a Hermitian matrix, it

has M non zero real eigenvalues A = diag[A1, ..., An] and
M orthogonal eigenvectors U = [uy, ..., un] belonging to
them.

In the above defined case, R has the following eigenvec-

. _ hjth _ 2y H _ Rhi—h
tors: u; = ﬁ, A1 =ozhy (hi +hy), us = ﬁ and

X2 = 02h# (h; — hy), and the sphering matrix can be writ-
ten as V. = AY?U. Using the eigenvalue decomposition
of R, the definition of the scalar product in (2), and the
mixing vectors angle o and the SVA p defined in Sec. 2.2,

tft;  hV”Vh, hR'h

cos(pe,) = = = — =
' [E2][t1] [E2][61] [61][61]
_ fl{{hl + fl{{h2 fl{{hl - fl{{hz
|E1][t1] |E2]]t1]
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cos . — cot asin
[E1][1]

sin p

é{{tQ _ _sina (9)
[Ex][62]  [E1][t2]

cos(pu,)

Combining the results in (9), we can define the conver-
gence range: The algorithm will converge to the target (at
least) when the miss-estimation is smaller than a critical
angle pieriticar in (10).
1+ cosa

sin v

COtM < cot Heritical = (10)

For a real-world acoustical application, it is important to
analyze (10) with realistic numbers for the SVA y and the
mixing vectors angle « in each frequency bin. Figure 1 also
shows the critical angle. In both cases, the SVA p is in
almost all frequency bins under the critical angle.

3.3. Real-world assessment

Several tests with realistic mixtures were executed. Japanese
language sounds were mixed with room impulse responses
measured in real rooms. The reverberation times were 0,
150 and 300 ms. The impulse responses where N = M =3
were from the RWCP database, and a complete description
is available at http://tosa.mri.co.jp/ sounddb/index.htm.
Furthermore, the algorithm has been tested with real-world
mixtures for the case of N = M = 2.

Figure 4 shows the signal-to-interference-ratio (SIR) in
each frequency bin. In almost all frequencies the algorithm
converged against the correct solution and yielded a high
SIR. Negative values indicated an incorrect permutation
that happened mostly in the low frequency range, but it
also occasionally occurred in the higher frequency ranges.
This is attributed to a large estimation error due to the
multi-path mixture and amplification by the PCA.

Incorrect steering vectors caused by an incorrect look di-
rection (a) and by reverberation (b) were used in all plots
of Fig. 4. A high improvements of the frequency SIR over
10dB were achieved, even in the 3 x 3 (N = M = 3) case.
This demonstrates the effectiveness of the new algorithm in
its major domain when a rough estimation of the steering
vector is available. Although the computational cost has
not been analyzed yet, the convergence is very fast due to
the Newton method of the underlying FastICA algorithm.

4. CONCLUSION

We introduced a new ICA algorithm with a geometrical
constraint and showed its effectiveness both theoretically by
defining a convergence range and experimentally by using
impulse responses from a real room. The new algorithm
solves the permutation problem of BSS of acoustic mixtures,
particularly when the number of sources and microphones
becomes larger than two.

5. ACKNOWLEDGMENT

We thank Stefan Winter for revising the algorithms, Hiroshi
Sawada and Ryo Mukai for daily cooperation and valuable
discussions, and Dr. Dieter Filbert and Dr. Shigeru Kata-
giri for their continuous encouragement.

N
o

w
=]

n
=]

SIRin dB
=

o

=)

0 1000 2000 3000 4000
Frequency (Hz)

(a) Tr = 0 ms, Af = 20°

I
o

T
i
=l
10”&\{} “"I‘ | |
LI il
ik |

1
|
il
i

—

SIRin dB

=107

0 1000 2000 3000 4600
Frequency (Hz)

(b) Tk = 150 ms, Af =0°

Figure 4: Real-world simulation results in N = M =3
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