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ABSTRACT

Frequency domain Blind Source Separation (BSS) is
shown to be equivalent to two sets of frequency domain
adaptive microphone arrays, i.e., Adaptive Beamformers
(ABFs). The minimization of the off-diagonal components
in the BSS update equation can be viewed as the minimiza-
tion of the mean square error in the ABF. The unmixing
matrix of the BSS and the filter coefficients of the ABF con-
verge to the same solution in the mean square error sense
if the two source signals are ideally independent. There-
fore, the performance of the BSS is limited by that of the
ABF. This understanding gives an interpretation of BSS
from physical point of view.

1. INTRODUCTION

Blind Source Separation (BSS) is an approach to es-
timate source signals si(t) using only the information of
mixed signals xj(t) observed at each input channel. BSS is
applicable to the achievement of noise robust speech recog-
nition and high-quality hands-free telecommunication. It
might also become one of the cues for auditory scene anal-
ysis.

To achieve the BSS of convolutive mixtures, several
methods have been proposed [1]. In this paper, we consider
the BSS of convolutive mixtures of speech in the frequency
domain [2].

In earlier works, Kurita et al. [3] and Parra et al. [4]
utilized the relationship between BSS and Adaptive Beam-
formers (ABF) to achieve a better performance of BSS.
However, they did not discuss this relationship theoreti-
cally.

Signal separation by using a noise cancellation frame-
work with signal leakage into the noise reference was dis-
cussed in [5, 6]. This study showed that the least squares
criterion is equivalent to the decorrelation criterion of a
noise free signal estimate and a signal free noise estimate.
The error minimization was shown to be completely equiv-
alent with a zero search in the crosscorrelation.

Inspired by their discussions, but apart from the noise
cancellation framework, we attempt to see the frequency
domain BSS problem with a frequency domain adaptive
microphone array, i.e., Adaptive Beamformer (ABF) frame-
work. The equivalence and differences between the BSS and
ABF are discussed.
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Figure 1: BSS system configuration.

2. FREQUENCY DOMAIN BSS OF
CONVOLUTIVE MIXTURES OF SPEECH

In this paper, S(ω, m) = [S1(ω,m), · · · , SN (ω, m)]T ,
X(ω,m) = [X1(ω,m), · · · ,XM (ω,m)]T , and Y (ω,m) =
[Y1(ω,m), · · · , YN (ω,m)]T are the time-frequency repre-
sentations of the source signals, observed signals and out-
put signals (estimated source signals) respectively, which
are obtained by frame-by-frame discrete Fourier transform
(DFT). ω is the frequency index and m denotes the posi-
tion of the frame with width T . We consider a two-input,
two-output convolutive BSS problem, i.e., N = M = 2 (see
Fig. 1) without a loss of generality.

In frequency domain BSS [2], the separation is per-
formed using only the information of observed signals
X(ω,m) = H(ω)S(ω, m), under the assumption that the
source signals are mutually independent in each frequency
bin ω. Here, H(ω) is a (2×2) mixing matrix comprising
components Hji(ω), which are Fourier transforms of the P -
point impulse responses from a source i to a microphone j.
We assume that H(ω) is invertible, and Hji(ω) �= 0.

The unmixing process can be formulated in a frequency
bin ω as follows:

Y (ω,m) =W (ω)X(ω,m), (1)

whereW (ω) represents a (2×2) unmixing matrix. W (ω) is
determined so that Y1(ω,m) and Y2(ω,m) become mutually
independent. The above calculations are carried out at each
frequency independently.
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2.1. Frequency domain BSS of convolutive mix-
tures using Second Order Statistics (SOS)

A decorrelation criterion is sufficient to estimate all Wij

for non-stationary signals [6]. Previously, [7] and [8] utilized
the SOS for mixed speech signals.

In order to determine W (ω) so that Y1(ω,m) and
Y2(ω,m) become mutually uncorrelated, we seek a W (ω)
that diagonalizes the covariance matrices RY (ω, k) simul-
taneously for all time blocks k,

RY (ω, k) = W (ω)RX(ω, k)W ∗(ω)

= W (ω)H(ω)Λs(ω, k)H∗(ω)W ∗(ω)

= Λc(ω, k), (2)

where ∗ denotes the conjugate transpose, RX is the covari-
ance matrix of X(ω), i.e.,

RX(ω, k) =
1

M

M−1∑
m=0

X(ω,Mk + m)X∗(ω, Mk + m), (3)

Λs(ω, k) is the covariance matrix of the source signals,
which is a different diagonal matrix for each k, and Λc(ω, k)
is an arbitrary diagonal matrix.

The diagonalization of RY (ω, k) can be written as an
overdetermined least-squares problem,

argmin
W (ω)

∑
k

||off-diagW (ω)RX(ω, k)W ∗(ω)||2 (4)

subject to
∑

k

diag||W (ω)RX(ω, k)W ∗(ω)||2 �= 0,

where ||�||2 is the squared Frobenius norm.

3. FREQUENCY DOMAIN
ADAPTIVE BEAMFORMER

Here, we consider the frequency domain adaptive beam-
former (ABF), which can remove a jammer signal. Since our
aim is to separate two signals S1 and S2 with two micro-
phones, we use two sets of ABFs (see Fig. 2). Note that
the ABF can be adapted when only a jammer exists but a
target does not exist, and that the direction of the target
or the impulse responses from the target to microphones
should be known.

3.1. ABF for a target S1 and a jammer S2

First, we consider the case of a target S1 and a jammer
S2 [see Fig. 2(a)]. When target S1 = 0, output Y1(ω,m) is
expressed as

Y1(ω,m) = W (ω)X(ω, m), (5)

where
W (ω)=[W11(ω),W12(ω)],X(ω,m)=[X1(ω,m),X2(ω,m)]T .

To minimize jammer S2(ω,m) in output Y1(ω,m) when
target S1 = 0, mean square error J(ω) is introduced as

J(ω) = E[Y 2
1 (ω, m)]

= W (ω)E[X(ω,m)X∗(ω,m)]W ∗(ω)

= W (ω)R(ω)W ∗(ω), (6)

where E[·] is the expectation operator and
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Figure 2: Two sets of ABF-system configurations.

R(ω) = E

[
X1(ω, m)X∗

1 (ω,m) X1(ω, m)X∗
2 (ω,m)

X2(ω, m)X∗
1 (ω,m) X2(ω, m)X∗

2 (ω,m)

]
. (7)

By differentiating the cost function J(ω) with respect toW
and setting the gradient equal to zero, we obtain [hereafter
(ω,m) and (ω) are omitted for convenience],

∂J(ω)

∂W
= 2RW ∗ = 0. (8)

Using X1 = H12S2, X2 = H22S2, we get

W11H12 + W12H22 = 0. (9)

With Eq. (9) only, we have a trivial solution
W11=W12=0. Therefore, an additional constraint should
be added to ensure target signal S1 in output Y1, i.e.,

Y1 = (W11H11 + W12H21)S1 = c1S1, (10)

which leads to

W11H11 + W12H21 = c1, (11)

where c1 is an arbitrary complex constant. The ABF solu-
tion is derived from simultaneous equations Eqs. (9) and
(11).

3.2. ABF for a target S2 and a jammer S1

Similarly for a target S2, a jammer S1, and an output
Y2 [see Fig. 2(b)], we obtain

W21H11 + W22H21 = 0 (12)

W21H12 + W22H22 = c2. (13)

3.3. Two sets of ABFs

By combining Eqs. (9), (11), (12), and (13), we can
summarize the simultaneous equations for two sets of ABFs
as follows,[

W11 W12

W21 W22

][
H11 H12

H21 H22

]
=

[
c1 0
0 c2

]
. (14)
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4. EQUIVALENCE BETWEEN
BLIND SOURCE SEPARATION AND

ADAPTIVE BEAMFORMERS

As we showed in Eq. (4), the SOS BSS algorithm works
to minimize off-diagonal components in

E

[
Y1Y

∗
1 Y1Y

∗
2

Y2Y
∗
1 Y2Y

∗
2

]
, (15)

[see Eq. (2)]. Using H and W , outputs Y1 and Y2 are
expressed in each frequency bin as

Y1 = aS1 + bS2 (16)

Y2 = cS1 + dS2, (17)

where[
a b
c d

]
=

[
W11 W12

W21 W22

][
H11 H12

H21 H22

]
, (18)

and they show the paths in Fig. 3.
We now analyze what is going on in the BSS framework.

After convergence, the expectation of the off-diagonal com-
ponent E[Y1Y

∗
2 ] is expressed as

E[Y1Y
∗
2 ]

= ad∗E[S1S
∗
2 ] + bc∗E[S2S

∗
1 ] + (ac∗E[S2

1 ] + bd∗E[S2
2 ])

= 0. (19)

Since S1 and S2 are assumed to be uncorrelated, the first
term and the second term become zero. Then, the BSS
adaptation should drive the third term of Eq. (19) to zero
for all time blocks k. This leads to

ac∗ = bd∗ = 0, abc∗d∗ = 0. (20)

CASE 1: a = c1, c = 0, b = 0, d = c2[
W11 W12

W21 W22

][
H11 H12

H21 H22

]
=

[
c1 0
0 c2

]
(21)

This equation is identical with the Eq. (14) in ABF.

CASE 2: a = 0, c = c1, b = c2, d = 0[
W11 W12

W21 W22

][
H11 H12

H21 H22

]
=

[
0 c2

c1 0

]
(22)

This equation leads to permutation solution, Y1 =
c2S2, Y2 = c1S1.

CASE 3: a = 0, c = c1, b = 0, d = c2[
W11 W12

W21 W22

][
H11 H12

H21 H22

]
=

[
0 0
c1 c2

]
(23)

This equation leads to undesirable solution Y1 = 0, Y2 =
c1S1 + c2S2.

CASE 4: a = c1, c = 0, b = c2, d = 0[
W11 W12

W21 W22

][
H11 H12

H21 H22

]
=

[
c1 c2

0 0

]
(24)

This equation leads to undesirable solution Y1 = c1S1 +
c2S2, Y2 = 0.

Note that CASE 3 and CASE 4 do not appear in general
because we assume thatH(ω) is invertible, and Hji(ω) �= 0.

The BSS can adapt, even if there is only one active
source. In this case, only one set of ABF is achieved [9].
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Figure 3: Paths in Equation (18).

5. SIMULATIONS AND DISCUSSIONS

5.1. Limitation of frequency domain BSS

Frequency domain BSS and frequency domain ABF are
equivalent [see Eqs. (14) and (21)] in the mean square er-
ror sense if the independent assumption ideally holds [see
Eq. (19)]. If not, the first and second terms of Eq. (19)
behave as a bias noise in getting the correct coefficients
a, b, c, d. We have shown in [10], that a long frame size
works poorly in frequency domain BSS for speech data of
a few seconds. This is because the number of data in each
frequency bin becomes few and the assumption of indepen-
dency between S1(ω, m) and S2(ω,m) does not hold in each
frequency when we use a long frame [11]. Therefore, the
upper bound of the performance of BSS is given by that of
ABF.

Figure 4 shows the separation performances of BSS and
ABF. We performed simulations for two different reverber-
ation time TR = 0 ms and 300 ms. The room size was
5.73 m × 3.12 m × 2.70 m and the distance between the
loudspeakers and microphones was 1.15 m. We used a two-
element array with an inter-element spacing of 4 cm. The
speech signals arrived from two directions, −30◦ and 40◦.
The length of speech data was about eight seconds. We used
the beginning three seconds of the data for learning and the
entire eight seconds data were separated. We changed the
frame size for DFT, T from 32 to 2048 and investigated
the performance for each condition. The sampling rate was
8 kHz, the frame shift was half of frame size T , and the anal-
ysis window was a Hamming window. In order to evaluate
the performance, we used the signal-to-interference ratio
(SIR), defined as the output signal-to-noise ratio (SNR) in
dB minus the input SNR in dB. These values were averaged
for the whole six combinations with respect to the speakers.
As for an ABF, we used the ABF proposed by Frost [12].

In the BSS case, when the frame size was too long,
the separation performance got worse. This is because the
independency assumption collapses in each frequency when
the frame size is long. On the other hand, ABF does not
use the assumption of independency of the source signals.
In the ABF case, therefore, the separation performance in-
creased as the frame size became longer. Figure 4 confirms
that the performance of the BSS is limited by that of the
ABF.

5.2. Physical interpretation of BSS

Now, we can understand the behavior of BSS as two
sets of ABFs. Figure 5 shows directivity patterns obtained
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Figure 4: Results of SIR for different frame sizes. The solid
lines are for ABF and the broken lines are for BSS. (a)
Non-reverberant test, (b) reverberant test (TR=300 ms).

by BSS and ABF. In Fig. 5, (a) and (b) show directivity
patterns by W obtained by BSS, and (c) and (d) show
directivity patterns byW obtained by ABF. When TR = 0,
a sharp spatial null is obtained by both BSS and ABF [see
Figs. 5(a) and (c)]. When TR = 300 ms, the directivity
pattern becomes duller[see Figs. 5(b) and (d)].

BSS removes the sound from jammer direction and re-
duces reverberation of the jammer signal to some extent
[13] in the same way as ABF. This understanding clearly
explains the poor performance of the BSS in a real acoustic
environment with a long reverberation.

The BSS was shown to outperform a null beamformer
that forms a steep null directivity pattern towards a jam-
mer under the assumption of the jammer’s direction being
known [13, 14]. It is well known that an adaptive beam-
former outperforms a null beamformer in long reverber-
ation. Our understanding also clearly explains the result.

Note that fundamental differences exist in the adap-
tation period (i.e., when they should adapt), data length
needed to adapt the filters, and necessity of the knowledge
of the target signals.

6. CONCLUSION

We gave an interpretation of BSS from physical point
of view showing the equivalence between frequency domain
Blind Source Separation (BSS) and two sets of frequency
domain adaptive beamformers (ABFs). The unmixing ma-
trix of the BSS and the filter coefficients of the ABF con-
verge to the same solution in the mean square error sense if
the two source signals are ideally independent. Therefore,
the performance of the BSS is limited by that of the ABF.
Moreover, we can understand the behavior of BSS as two
sets of ABFs. BSS reduces reverberation of the jammer sig-
nal to some extent in the same way as ABF. That is, BSS
mainly removes the sound from jammer direction. This
understanding clearly explains the poor performance of the
BSS in a real acoustic environment with long reverberation.
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Figure 5: Directivity patterns (a)obtained by BSS
(TR=0 ms), (b) obtained by BSS (TR=300 ms), (c)obtained
by ABF (TR=0 ms) and (d) obtained by ABF (TR=300 ms).
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