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"Blind Separation of More Speech Signals than Sensors

using Time-frequency Masking and Mixing Matrix Estimation
(OShoko Araki, AAudrey Blin, Shoji Makino (NTT Corporation)

1. Introduction

This paper focuses on underdetermined blind source
separation (BSS) of three speech signals mixed in a real
environment from measurements provided by two sensors.
Up to now, solving the BSS problem in an underdetermined
case has mainly consisted in assuming that the speech
signals were sufficiently sparse [1-3]. They designed binary
masks extracting signals at time-frequency points where only
one signal was supposed to exist. However, due to
unexpected discontinuous zero-padding, such separated
signals have considerable distortion, and therefore a loud
musical noise is heard. To overcome this issue, we propose
to combine sparseness with a mixing matrix estimation.
Experimental results in a real room show that our proposed
method provides separated signals of better quality than
those extracted with only the binary masks.

2. Problem statements and notations

In this paper, we consider speech mixtures observed in a
real room. In this case, as speeches are mixed with their
reverberation, the observed signals x §=/,..,M) can be
modeled as convolutive mixtures of the source signals s;

(i=1..,N) as I where J; is the impulse
x; (t)= (D) ;
Fl () ;hﬂ SJ

response from a source { to a sensorj. In this paper, we deal
with the case of N=3 and M=2. Moreover, we assume that
the source signals are mutually independent and sparse:
namely signals have large values at rare sampling points. We
are using the Short Time Fourier Transform (STFT) to
convert our problem into a linear instantaneous mixtures’
problem as well as to improve the sparseness of the speech
signals [1]. In the time-frequency domain, our system
becomes: X (fm) = H({)S(f,m) wheref is the frequency, m the
frame index, H(f) the 2 X 3 mixing matrix whose iy
component is a transfer function from a source ; to a sensorj,
X(m)=lx,(m), Xoim)l' and SEn)=(S,(fm), Sfim).
Sy(fm)1" are the Fourier transformed observed signals and
source signals, respectively.

Our aim is to estimate three speech signals from
measurements provided by two sensors.

3. Sparseness Inquiries

The first definition of sparseness consists in saying that
the sources contain many zero samples. This means that the
sources overlap at infrequent intervals.

Figure 1 is a histogram showing the number of sources
that are simultaneously active. It can be seen that the time
points where no sources are active are very numerous
whereas the time points where three sources are active are
very infrequent. We can infer from these observations that

the signals are sparse and that the three signals rarely overlap.

4. Proposed method

In previous methods (1, 2], one of the major drawbacks
was the occurrence of distortion, i.e., musical noise. To
overcome this issue, we propose a three-step method.
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Fig. 1: Histogram of the number of active sources: 0,1,2 or 3
for a male-male-female combination for an fftsize of 512 in the
reverberant case (Tg=200ms).

[1* step] One source detection

This first step consists in detecting the frame indices m
when only one of the three sources is active for each
frequency binf. If the sources are sparse enough, we can find
the time-frequency points where each source exists alone,
they are located on each one of the three lines observed in
the scatter-plot of the measurements (Fig. 2). By setting
narrow areas surrounding these lines, such as areas 1, 2 and
3 in Fig. 2, we can determine when only one source is active.
In the previous works [1-3], the signals are reconstructed
using these time-frequency points. However, the separated
signals had large distortion due to an unexpected zero-
padding caused by the narrow masks.

[2" step] Estimation of mixing matrix

Here, inspired by Deville's method [4], we estimate the
mixing matrix in the time-frequency domain.

The observed signals can be rewritten as:

1 1 1 Hy(f )5 .m) (1.
|:Xl(f.m)i|: Hul(f) Haolf) Hulf) || Hol) 50 m)
X 0f m) Hy(f) Hulf) Hul) Half)- 80 vm)

Using time-frequency points estimated in the first step when
only §; (=1, 2, 3) is active, we have X, (fm)=H ()S{f-m)
and  X(fm)=Hy()Si(fim). Then taking the ratio
X(fm)/X (fm) provides one of the factors of the mixing
matrix Hy()/H ()

[3™ step] Separation of each two signals

At this stage, it should be noted that knowing the mixing
matrix does not enable us to separate the signals when three
sources are active because the mixing matrix is not square.
Nevertheless, it is still possible to rebuild the time-frequency
points when two sources are active by considering much
wider areas like for example area 23 in Fig. 2. By taking
such areas, we can estimate the (f; m)-points when S§,(f m) is
null and our system becomes:
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Fig. 2: Scatter-plots of the recorded signals for an fftsize of 512
and a frequency fof 312Hz. Tg=130 ms.

{Xl(f’m)]= szl(f) szl(f) _[le(f)sz(f,m)} 2.
GO a0y a0 ] LS m)

Now the mixing matrix is square and can thus be inverted,

Hy ()85 (f vm) Hp(f) Hy() X (f om)

We proceed in the same way when S,(f m) is null.
Note that, in Fig. 1, we have already confirmed that we
do not often have three sources active simultaneously.

[Hu(f)Sszvm)} H::zl(f) H,,l(f) i .[Xl(f_.m)} (3).

5. Experiments

5.1. Experimental conditions

The recordings were done in a room with little
reverberation (Tg=130 ms) using a two-element array of
directional microphones 4 cm apart. The speech signals
came from three directions: 50° (female), 90° (male) and
120° (male) and the distance between the sources and the
microphones was 55 cm. The sampling rate was 8 kHz and
the FFT frame size was of 512, in which case the degree of
speech signal overlap was the smallest [5].

To evaluate the separation performance, we calculated the
Signal-to-Interference Ratio (SIR) as a measure of separation
performance and the Signal-to-Distortion Ratio (SDR) as a
measure of sound quality.

5.2. Mask justification

We assessed the approximate W-Disjoint Orthogonality
[3] to check the percentage of recoverable power. The
approximate WDO is defined as:

r,(x) =100 g, (F ,m)S, (F ) 1P FULS, (F,m) 1P (4)

where
s P 1 20103('S,(f'm“”l}j(f,m)l);.x(5)
0 otherwise

and where Y (fm) is the STFT of the summation of the
5 z 2 3 N )
sources interfering with source j: ¥, ()= 23' ) If 1 is
i=lizf
small, the energy of the output signal is lost by the binary
mask. The solid line in Fig. 3 shows the approximate WDO
when only the binary mask (5) is used. If we want a SIR of
20 dB, only around 50 % of the original power is recoverable,
that is, almost half the points are zero-padded by the binary
mask and such distortion cannot be avoided.
Figure 3 also shows the approximate WDO with narrow
and wide masks. If we use narrow masks (e.g., area 3 in Fig.
2) as in the conventional method, the recoverable power
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Fig. 3: Approximate WDO against the threshold x. fftsize=512,
Tr=130 ms.

Table 1: SIR and SDR calculated in dB for different approaches,
fftsize=512, Tr=130 ms

SIR1 | SIR2 | SIR3 | SDR1 | SDR2 | SDR3
sparseness | 153 | 9.9 10.6 | 8.4 10.3 34
invH,y 11.6 | 3.1 8.7 12.2
invHzs 3.3 7.6 12.5 1.2

is only around 45% with a threshold of 10dB, whereas if we
utilize wider masks (e.g. area 23 in Fig. 2), we can recover
over 60% of the power of original signals. Consequently the
technique consisting in using wide areas makes it possible to
reduce the distortion of the separated signals.

5.3. Results

Table 1 shows the separation results. “sparseness”
implies the performance with conventional method, i.e., with
the narrow masks (areas 1, 2, 3). “invH;;” and “invH,"
mean that we are applying our mixing matrix to area 12 and
area 23, respectively. As we can see, the use of our method
allows us to obtain less distorted signals without any serious
deterioration of the SIR.

6. Conclusion

We proposed a separation method for use when there
are more speech signals than sensors by combining a
sparseness approach and an estimation of the mixing matrix.
The first experimental results are very encouraging in terms
of quality and suggest that the proposed method is an
approach that deserves serious investigation.
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