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ABSTRACT

Subband processing is applied to blind source separation
(BSS) for convolutive mixtures of speech. This is moti-
vated by the drawback of frequency-domain BSS, ¢.e., when
a long frame with a fixed frame-shift is used to cover re-
verberation, the number of samples in each frequency de-
creases and the separation performance is degraded. In our
proposed subband BSS, (1) by using a moderate number
of subbands, a sufficient number of samples can be held in
each subband, and (2) by using FIR filters in each subband,
we can handle long reverberation. Subband BSS achieves
better performance than frequency-domain BSS. Moreover,
we propose efficient separation procedures that take into
consideration the frequency characteristics of room rever-
beration and speech signals. We achieve this (3) by using
longer unmixing filters in low frequency bands, and (4) by
adopting overlap-blockshift in BSS’s batch adaptation in
low frequency bands. Consequently, frequency-dependent
subband processing is successfully realized in the proposed
subband BSS.

1. INTRODUCTION

Blind source separation (BSS) is an approach that esti-
mates original source signals s;(n) using only information
on the mixed signals x;(n) observed in each input channel.
This technique can be used for noise robust speech recog-
nition and high-quality hearing aid systems.

We consider the BSS of speech signals in a real environ-
ment, i.e., the BSS of convolutive mixtures of speech. Sev-
eral methods have been proposed for achieving the BSS of
convolutive mixtures [1, 2]. In a real environment, signals
are mixed with their reverberation. In order to separate
such complicated mixtures, we need to estimate unmixing
filters of several thousands taps. Moreover, in a real envi-
ronment, an impulse response does not remain unchanged
even for several seconds. Therefore, we have to estimate
unmixing filters with short mixed speech signals.

In this paper, we propose a method of BSS using sub-
band processing. Hereafter, we call this method sub-
band BSS. Our proposal is motivated by a problem related
to frequency-domain BSS systems. We have shown that
the performance becomes poor with frequency-domain BSS
when we use a long frame to estimate a long unmixing filter
that can cover realistic reverberation [3]. This is because
when we use a longer frame for a few seconds of speech
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mixtures, the number of samples in each frequency bin be-
comes small and, therefore, we cannot correctly estimate
the statistics in each frequency bin.

Motivated by this fact, we propose the use of subband
processing for BSS. In this method, we can choose a mod-
erate number of subbands. Therefore, we can maintain a
sufficient number of samples in each subband. The subband
system also allows us to estimate FIR filters as unmixing
filters in each subband. Therefore, we can obtain an un-
mixing filter long enough to cover reverberation.

Previous studies have used subband processing for BSS.
[4] used subband BSS to reduce computational complexity.
However, their subband framework suffered from large alias-
ing distortion, therefore, they failed to obtain a good result.
We utilize a polyphase filterbank with oversampling, which
is widely used in the echo-canceller area, and our aim is to
maintain the number of samples in each subband. Some
other authors [5, 6] utilized a scalar coefficient for the un-
mixing system in each subband. However, we use FIR filters
as the unmixing system in each subband so as to estimate
sufficiently long unmixing filters to cover the reverberation.

Furthermore, we propose an efficient separation proce-
dure taking into consideration the frequency characteristics
of room reverberation and speech signals, i.e., using longer
unmixing filters and the overlap-blockshift technique only
in low frequency bands.

2. BSS OF CONVOLUTIVE MIXTURES

In real environments, signals are affected by reverber-
ation and observed by microphones. Therefore, Ns signals
recorded by N,, microphones are modeled as

Ns P
zj(m) = > hi(R)sin—k+1) (G=1,-
i=1 k=1
where s; is the source signal from a source 4, x; is the ob-
served signal by a microphone j, and hj; is the P-taps im-
pulse response from source i to microphone j.

In order to obtain unmixed signals, we estimate unmix-
ing filters w;;(k) of Q-taps, and the unmixed signals are
obtained as below:

Nm Q
yi(n) = > Y wi(R)as(n —k+1) (i=1,---,N,). (2)
j=1 k=1
The unmixing filters are estimated so that the unmixed
signals become mutually independent.

s Nm), (1)
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Figure 1: BSS system configuration.

In this paper, we consider a two-input, two-output con-
volutive BSS problem, i.e., Ns = Ny = 2 (see Fig. 1).

3. SUBBAND BASED BSS

The subband BSS system is composed of three parts: a
subband analysis stage, a BSS stage, and a subband syn-
thesis stage (Fig. 2).

First, in the subband analysis stage, input signals x;(n)
are divided into N subband signals X;(k,m) (k=0---,N—
1), where k is the subband index, m is the time index, and N
is the number of subbands. We used a polyphase filterbank
[7] here. Because signals are band-limited in each subband,
we can apply decimation at the down-sampling rate R. In
the analysis/synthesis stage, we also utilized single sideband
(SSB) modulation/demodulation [8]. We obtain the SSB
modulated signals X557 (k, m) in each subband.

Then, time-domain BSS is executed on X795 (k,m) in
each subband. Because SSB modulation is performed in
the analysis stage, we can implement the time-domain BSS
algorithm without expanding it into a complex value ver-
sion. Since we employ down-sampling, short FIR filters are
sufficient to separate the subband signals in each subband.
Thus SSB modulated unmixed signals Y;°%Z(k,m) are ob-
tained in each subband.

Finally, unmixed signals y;
sizing each unmixed signal Yis

are obtained by synthe-

n)
‘gB(k;, m).

3.1. Time-domain BSS

We can use any time-domain BSS algorithm for sub-
band BSS. Here, we explain the algorithm we used in our
experiment. To simplify the notation, X]-SSB (k,m) and
Y798 (k, m) are written as x;(n) and y;(n), respectively.

In this paper, we used an algorithm based on time-
delayed decorrelation for non-stationary signals [9]. The
adaptation rule of i-th iteration used to obtain the optimal
unmixing filters w(k) = {ws;(k)} is

Aw'(k) = 5 > _{(diagR;(0) " (diagRy(—k))
b=1

~(diagRy (0) T 'Ry (=k)} xw'(k)  (3)

k i k i
_o| mgreh®) mgeuh®) |
el wwiy (k) R s wh(k) |

where R (k) = {Ri;(k)} represents the covariance matrix
of outputs y(n) = [y1(n), y2(n)]” in the b-th analysis block
with time delay k, and « is a step-size parameter. Note
that the algorithm we used here is a batch algorithm, i,e,.
the algorithm runs by using all the data on each iteration.

3.2. Initial value of unmixing filters

We have shown that the solution of BSS behaves as a
set of adaptive beamformers, which make a spatial null to-
wards a jammer direction [10]. Based on this fact, we can
use constraint null beamformers as the initial value of the
unmixing system w, which can make a sharp null towards
a given jammer direction and maintain the gain and phase
of a given target direction. Without such an initial value,
the time-domain BSS algorithm does not converge at all.
Moreover, we can mitigate the permutation problem with
this initial value.

To design the initial value, first, we assume that the mix-
ing system H = {h;;} represents only the time difference
of sound arrival 7;; with respect to the midpoint between
microphones. In the frequency domain, H (w) is modeled as
H(w) = {hji(w)} = {exp (jwT;:)}, where 75, = %1 sin 0;, d;
is the position of the j-th microphone, 6; is the direction of
the i-th source, and ¢ is the speed of sound. Then we calcu-
late the inverse of H at each frequency, W (w) = H ' (w).
Next, we convert this W (w) = {W;;(w)} into the time do-
main, ws;(k) = IFFT(W;;(w)), and then obtain the ini-
tial value in each subband by applying subband analysis to
these w;;(k). Here, we gave 6;=+60° as initial values.

3.3. Solving the permutation and scaling problem

Thanks of the initial value mentioned in Sec. 3.2, the
permutation ambiguity was not observed. However, the
scaling problem occurred, i.e., the estimated source signal
components had a different gain in the different subbands.

To solve this problem, we use the directivity pattern ob-
tained by w [11]. First, we estimate the source directions
from the directivity patterns in each frequency bin. In or-
der to scale the signals of each frequency bin, we normalize
the rows of W(w) so that the gains of the target direc-
tions become 0 dB in each frequency bin. After we convert
these rescaled unmixing filters to the time domain, we exe-
cute a subband analysis. Then the unmixing filters w;; are
rescaled so that they have the same power as the subband
analyzed rescaled unmixing filters in each subband.

4. EXPERIMENTAL CONDITIONS

The impulse responses were recorded in a real room.
The room size was 5.73 m X 3.12 m X 2.70 m and the dis-
tance between the loudspeakers and microphones was 1.15
m. The reverberant time was Tx = 300 ms. We used a
two-element array with an inter-element spacing of 4 cm.
The speech signals arrived from two directions, —30° and
40°. As the original speech, we used two sentences spo-
ken by two male and two female speakers. We investigated
three combinations of speakers: male-male, male-female,
and female-female. The data length was three seconds for
adaptation and about eight seconds for separation. In order
to evaluate the performance, we used the signal to interfer-
ence ratio (SIR), defined as

SIR; = SIRg, - SIRy,

_ >, [Ais(@)Si())®
SIRg; = 10log > A5 @)S; @)

_ og >, [Hii(w)Si(w)]?
SIR;; = 10log Zw |Hsj(w)S;(w)|?’
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Figure 2: System configuration of subband BSS. TDBSS: time-domain BSS.

where A(w) = W (w)H (w) and ¢ # j. SIR means the ratio
of a target-originated signal to a jammer-originated signal.

4.1. Subband System

In the analysis stage, in order to avoid the aliasing in-
fluence, the SSB-modulated subband signals were not crit-
ically sampled, but two-times oversampled. That is, the
down-sampling rate R was given by R = %, where N is
the number of subbands (0-27). The low-pass filter used
in the analysis was f(n) = sinc(;}—};) of length 6N and in
the synthesis was g(n) = sinc(#7;) of length 6R. Here, the
number of subbands N = 64 and the down-sampling rate
R =16.

For the time-domain BSS, we estimated the unmixing
filters w;; of 64 and 128-taps in each subband. The step-size
for adaptation o was 1.0x10™* and the number of blocks
B was fixed at 20 for three seconds of speech.

4.2. Conventional frequency-domain BSS

The frequency-domain BSS iteration algorithm was

AW i(w) = n[diag ((2(¥)Y")) —(@(¥) Y)W, (w),
where Y=Y (w,m), superscript H denotes the conju-
gate transpose and (-) denotes the time average. As
the nonlinear function ®(-), we used ®(Y) = tanh(g -

abs(Y))ejarg(Y), where ¢g is a parameter to control the
nonlinearity. We fixed the frame shift at a half of the DFT
frame size T', so that the number of samples in the time-
frequency domain were equal.

5. EXPERIMENTS AND DISCUSSIONS

5.1. Separation performance of subband BSS

Table 1 shows the separation result and the value of
the average correlation coefficient CC between source sig-
nals averaged over all frequency bins and subbands. We
used unmixing filters w of 64 and 128-taps in each sub-
band; this corresponds to 1024 and 2048-taps in full-band,
respectively. N = 64 subbands with decimation R = 16
corresponds to 1" = 32 in frequency-domain BSS with re-
gard to down-sampling rate.

In frequency-domain BSS, CC becomes large and the in-
dependent assumption seems to collapses as frame size 1T’
becomes large. This is because the number of samples in
each frequency bin becomes small. Therefore, the perfor-
mance degraded when we used unmixing filters of 2048-taps
(i.e., frame size T = 2048).

By contrast, better separation performance was achieved
in subband BSS even when we estimated unmixing filters
of 2048-taps. Moreover, in subband BSS, we were able to
confirm that the CC value was sufficiently small. Another
possible reason for the superior performance of subband

Table 1: Separation performance of frequency-domain BSS

and subband BSS. Tr = 300 ms

Frequency-domain BSS Subband BSS
T 32 64 | 128 | 256 | 512 | 1024 | 2048 | 1024 | 2048

SIR[AB]| 5.01| 4.82 | 577 | 7.21| 819 | 827|740 [ 9.19 | 9.63
CC | 0.015] 0.023| 0.031| 0.047 | 0.068| 0.106| 0.172] 0.022| 0.022

CC: Average correlation coefficient

BSS is that the permutation problem does not arise in the
subbands. If it occurs between subbands, it can be solved
more easily than in frequency-domain BSS, simply because
there are fewer problems in subband BSS than in frequency-
domain BSS.

5.2. Further improvement for low frequency sub-
bands

In subband BSS, we can vary the method of estimating
the unmixing filter in each subband. In this subsection, we
propose a technique to improve separation performance by
concentrating on low frequency bands.

Generally speaking, the SIR is worse in low frequency
bands as shown in Fig. 3, in which the SIR values for
each subband for three combinations of speakers are plot-
ted. One of the reasons for poor performance at low fre-
quencies is that an impulse response is usually longer and
therefore it is more difficult to separate signals in low fre-
quency bands than in high frequency bands. Since speech
signals have high power in low frequency bands, it is im-
portant to improve the separation performance in low fre-
quency bands to obtain better separation performance.

5.2.1. Longer unmizing filters in low frequency bands

One possible way to improve the SIR in low frequency
bands is to estimate longer unmixing filters in low frequency
bands. From this, we propose to using longer unmixing fil-
ters for low frequency bands (bands 0-5). The row labeled
“no-overlap” in Table 2 shows the separation performance
for each unmixing filter length condition. Here, we used
unmixing filters of 32, 64 and 128 taps in each subband. It
is conceivable that the 32-taps long unmixing filter cannot
cover reverberation in low frequency bands. In this case,
even when we used long unmixing filters only in low fre-
quency bands, the separation performance was greatly im-
proved. However, when we used 128-taps in low frequency
bands, the separation performance degraded. This may be
because the number of samples in each subband is too small
to allow us to estimate 128-taps unmixing filter precisely.
The proposal in Sec. 5.2.2 will overcome this problem.
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Figure 3: SIR in each subband.

5.2.2. Owverlap-blockshift in low frequency bands

Another possible way to improve the SIR in low fre-
quency bands is to utilize the overlap-blockshift in the time-
domain BSS stage for low frequency bands. Using the
overlap-blockshift, we can increase outwardly the number
of samples in each subband, and can estimate unmixing fil-
ters more precisely. This is because we can estimate statis-
tics correctly using sufficiently long data. Since our time-
domain BSS algorithm (4) divides signals into B blocks to
utilize the non-stationality of signals, we can divide signals
into blocks with an overlap as long as the non-stationality is
expressed among blocks. Note that this overlap-blockshift
is executed in the BSS stage, i.e., after the decimation for
subband analysis.

In Table 2, the columns show the SIR obtained by the
overlap-blockshift only for low frequency bands (bands 0-5).
Overlap(x2) and overlap(x4) means that the block-shift
rate was 1/2 and 1/4 of block size, respectively. When we
used the overlap-blockshift only for low frequency bands, we
obtained better separation performance. With four times
overlap-blockshift, we can estimate the unmixing filters of
128-taps in low frequency bands, and we obtained the best
separation performance. Even if we used 128-taps for all
frequency bands, the performance was not increase com-
pared to the case when we used 64-taps in bands 6-32. The
use of 128-taps in all subband is the wasted effort, and the
overlap-blockshift only in low frequencies is sufficient to ob-
tain the improved performance for three seconds of speech.
Furthremore, when the overlap-blockshift was used in all
subband, the increase of SIR was at most 0.5 dB compared
to the SIR in Table 2. It should be noted that the SIR val-
ues in this section are for 500 iterations, and the unmixing
filters w;; are roughly rescaled so that they have the same
power as the power of the initial value in each subband.

By using long unmixing filters and the overlap-blockshift
technique only in low frequency bands, we can effi-
ciently separate the convolutive mixtures of speech. Such
frequency-dependent processing is impossible in time- and
frequency-domain BSS.

6. CONCLUSIONS

We proposed subband BSS: a BSS method with subband
processing. This proposal was motivated by the fact that
the separation performance is degraded when a long frame
size is used for several seconds of speech in frequency-
domain BSS. Our proposed subband BSS can (1) maintain

Table 2: Separation performance of subband BSS. Overlap-
blockshift was executed only for bands 0-5

band 0-5 |band 6-32 || no-overlap || overlap (x2) | overlap (x4)
32 32 5.82
64 32 8.86 9.61
128 32 8.71 9.75 10.09
64 64 10.31 10.80 10.79
128 64 10.28 11.21 12.01

[ 128 [ 128 | 1028 [ 1122 | 12.00 |

(SIR [dB])

a sufficient number of samples to estimate statistics in each
subband and (2) estimate an unmixing filter long enough to
cover the reverberation. We confirmed in experiments that
subband BSS is effective. Furthermore, we showed that (3)
we can improve the separation performance with long un-
mixing filters and (4) the overlap-blockshift technique only
in low frequency bands.
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