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Abstract

We propose a method for separating speech signals when sources
outnumber sensors. Several methods have already been proposed
for solving the underdetermined blind separation problem for con-
volutive mixtures, and they utilize the sparseness of speech sig-
nals. Some methods employ binary masks to extract the signals,
and therefore, their extracted signals contain loud musical noise.
To overcome this problem, we propose utilizing both a binary
mask and independent component analysis (ICA). First, using
sparseness, we estimate the time points when only one source is
active. Then, we remove this single source from the observations
and apply ICA to the remaining mixtures. Experimental results
show that our proposed method can separate signals with little
distortion even in reverberant conditions of TR=130 and 200 ms.

1. Introduction
Blind source separation (BSS) is an approach that estimates

original source signals si(n) only from observations xj(n) with-
out source or mixing process information.

In this paper, we consider the BSS of speech signals observed
in a real environment, i.e., the BSS of convolutive mixtures of
speech. Recently, many methods have been proposed to solve the
BSS problem of convolutive mixtures (e.g., [1]). However, most
of these methods consider the determined or overdetermined case,
i.e., the number of sensors is equal to or greater than the number
of signals. In contrast, we focus on the underdetermined BSS
problem where source signals outnumber sensors.

It is our understanding that there are two approaches to realize
the underdetermined BSS. Both approaches rely on the sparseness
of source signals. One is the clustering of time-frequency points
with binary masks [2], and the other is based on ML estimation,
where the sources are estimated after the mixing matrix estima-
tion [3–5]. Because separation in a real environment has been
tried with the former method, we have decided to watch a binary
masks approach [2]. If the signals are sufficiently sparse, that
is, most of the samples of a signal are almost zero, we can as-
sume that the sources rarely overlap. [2] uses this assumption and
extracts each signal using a time-frequency binary mask. How-
ever, due to these binary masks, their method results in too much
discontinuous zero-padding of the extracted signals, and so the
extracted signals are severely distorted.

To overcome this problem, we propose utilizing both a binary
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Figure 1: Block diagram of underdetermined BSS. N > M .

mask and independent component analysis (ICA). First, using a
binary mask, we estimate the time points when only one source
is active. Then, we remove this single source from the observa-
tions and apply ICA to the remaining mixtures in order to sepa-
rate the signals. This single source removal does not cause severe
zero-padding of the separated signals, therefore we can improve
their sound quality. Experimental results show that our method
can separate signals with little distortion even in real reverberant
environments of TR=130 and 200 ms.

2. Problem description
In real environments, N signals observed by M sensors are

modeled as convolutive mixtures xj(n) =
∑N

i=1

∑P

k=1
hji(k)

si(n − k + 1) (j = 1, · · · , M), where si is the signal from a
source i, xj is the signal observed by a sensor j, and hji is the P -
taps impulse response from a source i to a sensor j (see Fig. 1).
Here, we consider the underdetermined case N > M . In this
paper N = 3 and M = 2. Moreover, in this paper, the sources
are speech signals, i.e., the sources are assumed to be mutually
independent and sufficiently sparse in the time-frequency domain.

This paper employs a time-frequency domain approach be-
cause speech signals are more sparse in the time-frequency do-
main than in the time-domain [5] and convolutive mixture prob-
lems can be converted into instantaneous mixture problems in
each frequency. In the time-frequency domain, mixtures are mod-
eled as

�
(ω,m) = � (ω) � (ω, m), where � (ω) is a 2×3 mix-

ing matrix whose j-i component is a transfer function from a
source i to a sensor j, � (ω,m) = [S1(ω, m), S2(ω,m), S3(ω, m)]T ,�

(ω, m) = [X1(ω, m),X2(ω, m)]T and � (ω,m) = [Y1(ω,m),
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Figure 2: Example histogram. (a) TR = 0 ms and (b) TR = 200 ms.
A male-male-female combination with DFTsize T = 512.

Y2(ω, m),Y3(ω,m)]T show Fourier transformed source, observed
and separated signals, respectively. ω is the frequency and m is
the frame index.

Our objective is to estimate separated signals � (ω,m) using
only the information provided by observations

�
(ω, m).

3. Conventional methods:
with binary masks only

Standard ICA cannot be applied to underdetermined cases be-
cause it assumes that a mixing matrix is invertible. Several meth-
ods have been proposed (e.g., [2–5]) for solving an underdeter-
mined BSS problem, and they utilized source sparseness.

If most of the samples of a signal are almost zero, we say that
this signal is sparse. When signals are sufficiently sparse, we can
assume that the sources overlap at rare intervals. For a detailed
analysis of sparseness, see [6].

Some conventional methods use the sparseness assumption
and extract each signal using time-frequency binary masks. Be-
cause we can assume that sources do not overlap very often, we
can extract each source by selecting the time points at which there
is only one signal. One way of estimating such time points is to
use the level difference of the observations and the phase differ-
ence between the observations. In this paper, we utilize omni-
directional microphones, therefore we use the phase difference
ϕ(ω, m) = 6 X1(ω,m)

X2(ω,m)
between the observations.

Using ϕ(ω, m), we estimate the direction of arrival (DOA)
for each time point m by calculating θ(ω, m) = cos−1 ϕ(ω,m)c

ωd
,

where c is the speed of sound and d is the microphone spacing,
and make a histogram of the DOA θ(ω,m). Each peak corre-
sponds to each source in the histogram for each frequency. Let
these peaks be θ̃1, θ̃2 and θ̃3 where θ̃1 ≤ θ̃2 ≤ θ̃3 (Fig. 2), and
the signal from θ̃ξ be S̃ξ (ξ = 1, 2, 3).

We can extract each signal with a binary mask

Mξ(ω,m) =

{

1 θ̃ξ − ∆ ≤ θ(ω,m) ≤ θ̃ξ + ∆
0 otherwise

(1)

by calculating Yξ(ω,m) = Mξ(ω, m)Xj(ω, m) where j=1 or 2.
Here, ∆ is an extraction range parameter: if ∆ is small the separa-
tion performance is good but the distortion is large, in contrast, if
∆ is large the musical noise problem is reduced but the separation
performance deteriorates.

Although we can extract each signal using this binary mask
(1), such extracted signals are discontinuously zero-padded by the
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Figure 3: System setup

binary masks, and therefore, we hear musical noise in the ex-
tracted output.

4. Proposed Method:
Combination of binary mask and ICA

To overcome this musical noise problem, we propose using
both a binary mask and ICA. Our method has two stages (Fig. 3).
In the first stage, unlike the conventional approach, we remove
one source from mixtures using the signals’ sparseness. By this
removal, it is expected that their zero-padding of the extracted
signals to be less trouble because we extract more time-frequency
points than the conventional approach. Moreover, because we can
expect the remaining mixtures to consist of only two signals, we
can apply a standard ICA to these remaining mixtures in the sec-
ond stage. Because these separated signals are not highly zero-
padded, we can expect less musical noise.

[1st stage] One source removal:
Instead of extracting each source as in conventional approaches,

we remove only one source from the mixtures with a binary mask

M
pq
ICA(ω, m) =

{

1 θmin ≤ θ(ω, m) ≤ θmax

0 otherwise
(2)

by calculating

ˆ� pq
(ω,m) = M

pq
ICA(ω, m)

�
(ω, m). (3)

In (2), θmin and θmax are extraction range parameters, and in
(3), ˆ� pq

(ω,m) = [X̂pq
1 (ω,m), X̂pq

2 (ω, m)] are expected to be
mixtures of S̃p and S̃q . For instance, if S̃1 can be removed from
the observations with a mask M23

ICA we can use ICA to separate S̃2

and S̃3 in the next stage. In this case θmin and θmax in (2) can
be θ̃1 < θth1 = θmin < θ̃2, θmax = 180◦ (see Fig. 4), where θ̃1

and θ̃2 are estimated in the same way as in the previous section.
Similarly, when S̃3 is to be removed from the observations with a
mask M12

ICA, θmin = 0◦, θ̃2 < θth2 = θmax < θ̃3.
Because our system has only two outputs, both removals should

be performed to obtain three separated signals (see Fig. 3).
[2nd stage] Separation of remaining sources by ICA:

Because the remaining signals ˆ� pq
are expected to be mix-

tures of two signals, we can use 2×2 ICA to separate ˆ� pq
. The

separation process can be formulated as
� pq(ω,m) = � pq(ω) ˆ� pq

(ω,m), (4)
where ˆ

� pq
is the masked observed signal obtained by (3),

� pq(ω,m) = [Yp(ω, m), Yq(ω, m)]T is the separated output
signal, and � pq(ω) represents a (2×2) separation matrix. � pq(ω)
is determined so that Yp(ω,m) and Yq(ω, m) become mutually
independent.
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5. Experiments

5.1. Experimental conditions

In our experiments, we utilized the set-up shown in Fig. 5. For
tests of TR = 0 ms, we simulated a recording using the mixing
matrix Hji(ω) = exp (jωτji), where τji =

dj

c
sin θi, dj is the

position of the j-th microphone, and θi is the direction of the i-th
source.

For the reverberant tests, we used speech data convolved with
impulse responses recorded in a real room whose reverberation
time was TR = 130 and 200 ms.

As the original speech, we used three Japanese sentences spo-
ken by three male and three female speakers. We investigated
three combinations of speakers: male-male-female, male-male-
male, and female-female-female.

The DFT frame size T was 512 and the frame shift was 256
at a sampling rate of 8 kHz. The ∆ value in the conventional
method’s binary masks (1) was 15◦ in DOA. We used θth1 =
θ̃2 −∆ for M23

ICA (area 23), and θth2 = θ̃2 + ∆ for M12

ICA (area
12), where ∆ was also 15◦. With this ∆ value the conventional
method and our proposed method provided compatible signal to
noise ratio (SIR).

The adaptation rule of ICA utilized in our experiments was
� i+1(ω) = � i(ω) + η

[

diag
(

〈Φ( � ) � H〉
)

− 〈Φ( � ) � H〉
]

· � i(ω), where Φ( � ) = φ(| � |) · ej·6 ( � ), φ(x) = tanh(gx)
and g = 100 [7]. To solve the permutation problem of frequency
domain ICA, we employed the DOA and correlation approach [8],
and for solving the scaling problem of frequency domain ICA, we
used the minimum distortion principle [9].

5.2. Performance measures

We used the signal to interference ratio (SIR) as a measure of
separation performance, and the signal to distortion ratio (SDR)
as a measure of sound quality:

SIRi = 10 log

∑

n
y2

isi
(n)

∑

n
(
∑

i6=j
yisj

(n))2
(5)
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Figure 5: Room for reverberant tests.

SDRi = 10 log

∑

n
x2

ksi
(n)

∑

n
(xksi

(n) − αyisi
(n − D))2

. (6)

The permutation is solved before calculating SIR and SDR, i.e.,
yi is the estimation of si, and yisj

is the output of the whole
separating system at yi when only sj is active, and xksj

is the
observation obtained by microphone k when only sj is active. α

and D are parameters to compensate for the amplitude and phase
difference between xksi

and yisi
.

5.3. Experimental results

5.3.1. Sparseness assessments

The histograms we used to design the binary masks are shown
in Fig. 2. Because of the sparseness property of speech signals,
the signals are well localized and the histogram has sharp peaks
for TR = 0 ms [Fig. 2 (a)]. However, in a reverberant case the
peaks are not so sharp [Fig. 2 (b)]. This shows that signals overlap
each other in a reverberant case and it becomes more difficult to
use the sparseness assumption than when TR = 0 ms.

We can also see this overlap in Fig. 4, which shows the power
content by percentage of each signal when ∆ = 15◦. When
TR = 0 ms [Fig. 4 (a)], S1, S2 and S3 are dominant in the ar-
eas of M1, M2 and M3, respectively. When TR = 200 ms [Fig. 4
(b)], however, the other signals’ overlaps increase in each area. It
is difficult for the sparseness assumption to held in a reverberant
case.

The degree of sparseness affects the performance of the 2nd
stage of our method. Figure 4 also shows the percentage of each
source power in the areas of M12

ICA and M23
ICA. The contributions of

the third signal are small and two signals are dominant even when
TR=200 ms. Therefore, we can say that we can use ICA in the
2nd stage of our method.

5.3.2. Effect of one source removal

Table 1 shows the signal power eliminated by the zero-padding
∑

n
x1si

(n)2−
∑

n
ŝi(n)2

∑

n
x1si

(n)2
caused by binary masks, where ŝi(n) =

IDFT[M(ω, m)X1si
(ω, m)]. In the sparseness only case [i.e.,

M(ω, m) = Mi(ω, m)], a large part of the signal power was
eliminated by the binary mask. By contrast, with our proposed
method, signal power eliminated by M

pq
ICA(ω, m) was inferior. This

result convinces us that the adverse effect of zero-padding was
mitigated by using our method.
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Table 1: Power lost by binary masks (in %). (a) TR=0 ms, (b)
TR=130 ms, (c) TR=200 ms. A male-male-female combination,

(a)
mask M1 M2 M3 M12

ICA M23
ICA

output Y1 Y2 Y3 Y1 Y2 Y2 Y3

[%] 15 8.7 15 1.4 3.9 4.9 0.9

(b)
mask M1 M2 M3 M12

ICA M23
ICA

output Y1 Y2 Y3 Y1 Y2 Y2 Y3

[%] 39 6.0 28 1.6 2.5 3.6 4.4

(c)
mask M1 M2 M3 M12

ICA M23
ICA

output Y1 Y2 Y3 Y1 Y2 Y2 Y3

[%] 48 9.2 37 4.1 4.5 4.7 8.8

5.3.3. Separation results

Table 2 shows the experimental results we obtained for TR = 0
ms. The first row shows the results obtained solely using binary
masks, and the second and third rows show the results obtained
with our proposed method. With only a binary mask, the SDR
values were unsatisfactory, and a large musical noise was heard.
In contrast, with our proposed method, we were able to obtain
high SDR values without destroying the separation performance
SIR and the musical noise was reduced.

Moreover, Tables 3 and 4 show the results of reverberant tests
when TR = 130 and TR = 200 ms, respectively. In reverberant
cases, due to the decline of sparseness, the performance with both
methods was worse than when TR = 0 ms. However, we were
able to obtain higher SDR values with our proposed method than
with the conventional method even in reverberant environments.
Some sound samples can be found at our web site [10].

6. Conclusion
We proposed utilizing both a binary mask and ICA for BSS

when speech signals outnumber sensors. Our method avoids ex-
cessive zero-padding, and therefore, can separate the signals with
little distortion in reverberant environments of TR=130 and 200 ms.
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Table 2: Results of TR=0 ms simulations. ‘Conv.’: with conven-
tional method, ‘area 12’ and ‘area 23’: with our method. ∆=15◦.

male-male-female [dB]
SIR1 SIR2 SIR3 SDR1 SDR2 SDR3

Conv. 18.4 11.6 17.3 9.0 11.5 9.4
area 12 15.0 8.4 - 18.7 14.4 -
area 23 - 7.9 14.6 - 13.9 18.5

male-male-male
SIR1 SIR2 SIR3 SDR1 SDR2 SDR3

Conv. 14.4 5.5 17.4 5.5 9.2 6.0
area 12 9.2 2.5 - 16.8 14.7 -
area 23 - 3.7 11.3 - 10.5 12.4

female-female-female
SIR1 SIR2 SIR3 SDR1 SDR2 SDR3

Conv. 21.3 9.7 20.5 9.3 13.9 9.6
area 12 13.6 6.8 - 18.9 16.6 -
area 23 - 6.8 13.2 - 16.3 21.3

Table 3: Results of reverberant tests. TR=130 ms.
male-male-female [dB]

SIR1 SIR2 SIR3 SDR1 SDR2 SDR3
Conv. 10.4 6.8 10.7 4.8 13.3 6.2
area 12 9.5 6.1 - 8.8 15.9 -
area 23 - 6.4 8.9 - 14.4 9.5

male-male-male
SIR1 SIR2 SIR3 SDR1 SDR2 SDR3

Conv. 10.6 2.9 8.6 3.7 12.5 4.4
area 12 7.7 2.5 - 5.9 14.3 -
area 23 - 2.2 8.9 - 12.7 7.9

female-female-female
SIR1 SIR2 SIR3 SDR1 SDR2 SDR3

Conv. 16.0 9.2 13.7 6.4 16.0 6.9
area 12 12.2 7.9 - 8.6 17.6 -
area 23 - 7.9 9.7 - 16.5 10.6

Table 4: Results of reverberant tests. TR=200 ms.
male-male-female [dB]

SIR1 SIR2 SIR3 SDR1 SDR2 SDR3
Conv. 8.3 5.9 8.6 3.4 11.3 4.9
area 12 8.1 5.4 - 6.0 12.6 -
area 23 - 5.5 7.5 - 13.6 6.5

male-male-male
SIR1 SIR2 SIR3 SDR1 SDR2 SDR3

Conv. 7.7 1.9 5.4 1.1 10.6 4.0
area 12 6.6 2.3 - 4.2 11.6 -
area 23 - 1.7 2.4 - 10.5 5.4

female-female-female
SIR1 SIR2 SIR3 SDR1 SDR2 SDR3

Conv. 10.2 6.0 8.2 3.3 13.5 4.8
area 12 9.6 5.5 - 5.8 14.0 -
area 23 - 5.6 9.0 - 13.6 7.1
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