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Abstract— We propose a new method for solving the underdeter-
mined sparse signal separation problem. Some sparseness based
methods have already been proposed. However, most of these
methods utilized a linear sensor array (or only two sensors), and
therefore they have certain limitations; e.g., they cannot separate
symmetrically positioned sources. To allow the use of more than
three sensors that can be arranged in a non-linear/non-uniform
way, we propose a new method that includes the normalization
and clustering of the observation vectors. Our proposed method
can handle both underdetermined case and (over-)determined
cases. We show practical results for speech separation with non-
linear/non-uniform sensor arrangements. We obtained promising
experimental results for the cases of 3 × 4, 4 × 5 (#sensors ×
#sources) in a room (RT60= 120 ms).

I. INTRODUCTION

In this paper, we consider the blind source separation (BSS)
in a real environment, i.e., the BSS of convolutive mixtures.
In particular, we deal with the underdetermined BSS where
we have less sensors M than sources N (M < N ). Recently,
independent component analysis (ICA) [1] has been widely
studied for the convolutive BSS problem. However, ICA
cannot be applied when M < N . In contrast, we propose
a method that can handle both (over-)determined (M ≥ N )
and underdetermined (M < N ) cases.

Let us formulate the task. Suppose that sources s1, . . . , sN

are convolutively mixed and observed at M sensors

xj(t) =
∑N

k=1

∑
l hjk(l) sk(t− l), j =1, . . . , M, (1)

where hjk(l) represents the impulse response from source k to
sensor j. The goal is to obtain the separated signals yk(t) that
are estimations of sk only from the M observations. In order
to deal with the underdetermined problem, we assume that
sources sk are sparse signals, i.e., they have super-Gaussian
distributions. For instance this is true for speech signals in the
time-frequency domain.

There are several approaches [2–6] that rely on the sparse-
ness of the source signals. If the signals are sufficiently sparse,
we can assume that the sources rarely exist simultaneously.
Therefore, we can estimate each source by collecting obser-
vation samples that appear to belong to one of the sources.
Previously, this was done by using geometric information (e.g.,
direction of arrival (DOA) and/or distance) about the sources,
which is estimated from the phase and/or level difference
between two observations of a linear sensor array. Some
authors used the level difference between two observations
(e.g., [3]), some employed both the level difference and phase
difference of two sensors (e.g., [2]). Moreover, [5] used the

direction of arrival (DOA) derived from the phase difference
in order to normalize its frequency dependence, which causes
a permutation problem in different frequency bins [6].

With previously reported approaches, which use two obser-
vations (or a linear sensor array), we can solve the underdeter-
mined BSS problem in some cases. However, a linear array has
certain limitations; for example, it limits the separation ability
on a 2-dimensional half-plane, and offers no possibility of
utilizing a source elevation information. In addition, the previ-
ous DOA approach needed exact sensor positions and sensor
calibration to estimate the geometric features accurately. If
we can use more than two sensors arranged freely, we can
overcome such limitations.

In this paper, we propose a new method for separating
sparse signals that overcomes the above-mentioned limitations
of previous methods. Separation is achieved by clustering the
normalized observation vectors. Previously, we have applied
these normalization and clustering techniques to the basis vec-
tors produced by ICA [7] in order to overcome the permutation
problem that we face in frequency domain ICA. In contrast,
in this paper, we normalize and cluster the observation vectors
themselves and separate the signals directly.

With our method, first we normalize all the observations and
cluster the normalized observation vectors (see Eq. (5)). Then,
we design time-frequency binary masks using the clustering
result and estimate the separated signals with the masks. With
this approach, we do not need to know the exact sensor
locations, simply the maximum distance between a given
sensor and any other sensors. This relaxation makes it easy to
use a non-uniform sensor arrangement, and also eliminates the
need for sensor calibration. We show the experimental results
obtained in a room (reverberation time of 120 ms) with non-
linear sensor arrays.

II. PROPOSED APPROACH

A. Frequency domain operation

Figure 1 shows the flow of our method. First, time-domain
signals xj(t) sampled at frequency fs are converted into
frequency-domain time-series signals xj(f, τ) with an L-point
short-time Fourier transform (STFT):

xj(f, τ)←∑L/2−1
r=−L/2 xj(τ + r) win(r) e−2πfr, (2)

where f ∈ {0, 1
Lfs, . . . , L−1

L fs} is a frequency, win(r) is a
window that tapers smoothly to zero at each end, such as
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Fig. 1. Flow of proposed method

a Hanning window 1
2 (1 + cos 2πr

L ), and τ is a new index
representing time.

The remaining operations are performed in the frequency
domain. There are two advantages to this. First, convolutive
mixtures (1) can be approximated as instantaneous mixtures
at each frequency:

xj(f, τ) ≈∑N
k=1 hjk(f)sk(f, τ), (3)

where hjk(f) is the frequency response from source k to
sensor j, and sk(f, τ) is a frequency-domain time-series signal
of sk(t) obtained by the same operation as (2). The second
advantage is that the sparseness of a source signal becomes
prominent in the time-frequency domain if the source is
colored and non-stationary such as speech. The possibility of
sk(f, τ) being close to zero is much higher than that of sk(t).
When the signals are sufficiently sparse in the time-frequency
domain, we can assume that the sources rarely overlap and (3)
can be approximated as

xj(f, τ) ≈ hjk(f)sk(f, τ), k ∈ {1, · · · , N}, (4)

where sk(f, τ) is a dominant source at the time-frequency
point (f, τ). We estimate which source is dominant at each
time-frequency point (f, τ) by using the procedures described
in the following subsection.

B. Separation procedures

Let us have a vector notation of the mixing model (3) :

x(f, τ) ≈∑N
k=1 hk(f)sk(f, τ), (5)

where x = [x1, . . . , xM ]T is an observation vector and hk =
[h1k, . . . , hMk]T is the vector of the frequency responses from
source sk to all sensors.
1) Normalization: The new method involves normalizing all
observation vectors x(f, τ), j = 1, . . . , M , for all frequency
bins f = 0, 1

Lfs, . . . , L−1
L fs such that they form clusters,

each of which corresponds to an individual source. The
normalization is performed by selecting a reference sensor J
and calculating

x̄j(f, τ)← |xj(f, τ)| exp
[

arg[xj(f, τ)/xJ (f, τ)]

4fc−1dmax

]
(6)

where c is the propagation velocity and dmax is the maximum
distance between the reference sensor J and a sensor ∀j ∈
{1, . . . , M}. Then, we apply unit-norm normalization

x̄(f, τ)← x̄(f, τ) / ||x̄(f, τ)|| (7)

for x̄(f, τ) = [x̄1(f, τ), . . . , x̄M (f, τ)]T .
By this normalization, x̄(f, τ) becomes independent of

frequency, and keeps the level differences at all sensors and
all the phase differences with respect to the sensor J . In that
sense, we can say that our proposed method generalizes the
previous method [2, 6] for a multiple sensor case. As shown

in the Appendix, x̄(f, τ) becomes dependent only on the
positions of the sources and sensors. That is, the observation
vectors are clustered based on the source geometry.
2) Clustering: The next step is to find clusters C1, . . . , CN

formed by all normalized vectors x̄(f, τ). The centroid ck of
a cluster Ck is calculated by

ck ←
∑

x̄∈Ck
x̄/|Ck|, ck ← ck/||ck||,

where |Ck| is the number of vectors in Ck. Each cluster
corresponds to an individual source. The clustering criterion is
to minimize the total sum J of the squared distances between
cluster members and their centroid

J =
∑M

k=1 Jk, Jk =
∑

x̄∈Ck
||x̄− ck||2. (8)

This minimization can be performed efficiently with the k-
means clustering algorithm [8].
3) Reconstruction of each separated signal: Finally, we de-
sign a time-frequency binary mask that extracts the time-
frequency points in one of the clusters

Mk(f, τ) =
{

1 x̄(f, τ) ∈ Ck

0 otherwise (9)

and obtain the separated signals yk(f, τ) by

yk(f, τ) = Mk(f, τ)xJ′ (f, τ)

where J ′ ∈ {1, · · · , M} is a selected sensor index.
At the end of the flow, we have outputs yk(t) by an inverse

STFT (ISTFT):

yk(τ + r)← 1
L·win(r)

∑
f∈{0, 1

L fs, ..., L−1
L fs}

yk(f, τ) e 2πfr.

(10)

III. EXPERIMENTS

A. Experimental conditions

We performed experiments to verify that our method can
separate signals mixed in a reverberant condition. We mea-
sured impulse responses hjk(l) under the conditions shown in
Figs. 2 and 4. Mixtures were made by convolving the impulse
responses and 5-second English speeches. The reverberation
time of the room was RT60 =120 ms. The sampling rate was
8 kHz. The frame size L for STFT was 512, and we changed
the frame shift from 256(= L/2) to 64(= L/8).

B. Performance measures

The separation performance was evaluated in terms of the
improvement in the signal-to-interference ratio (SIR) for each
output i. This improvement was calculated by OutputSIR i −
InputSIRi, where

InputSIRi = 10 log10

〈|xJ′i(t)|2〉t
〈|∑k �=i xJ′k(t)|2〉t (dB), (11)

OutputSIRi = 10 log10

〈|yii(t)|2〉t
〈|∑k �=i yik(t)|2〉t (dB), (12)
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Fig. 2. Experimental setup with a non-linear array
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Fig. 3. Example clustering result (M = 3, N = 4). o, x, +, * show the
cluster members C1, C2, C3 and C4, respectively.

where xJ′k(t) =
∑

l hJ′k(l) sk(t− l) and yik(t) is the compo-
nent of sk that appears at output yi(t): yi(t) =

∑N
k=1 yik(t).

Moreover, we used the signal to distortion ratio (SDR) as a
measure of sound quality:

SDRi = 10 log10

〈|xJ′i(t)|2〉t
〈|xJ′i(t)− αyii(t−D)|2〉t (dB), (13)

where α and D are parameters used to compensate for the

amplitude and phase difference between xJ′i and yii. We
investigated four combinations of speakers and averaged the
results.

C. Results

First, we show the result we obtained for four sources with
three sensors that were arranged non-linearly (Fig. 2). Figure 3
shows an example clustering result for normalized observation
vectors at two frequencies. Each point shows the squared dis-
tance ||x̄−c1||2 between normalized vectors x̄ and one of the
centroids c1. We can see that the clustering was accomplished
successfully using our clustering method. Moreover, it can be
seen that the clustering is independent of frequency. Therefore,
we can cluster all the frequency components together.

Table I shows the separation result. From Table I, we
can see that our proposed method achieved good separation
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Fig. 4. Experimental setup with a 3-D array

TABLE I

EXPERIMENTAL RESULTS FOR M = 3,N = 4,

y1 y2 y3 y4

InputSIRi −6.3 −6.4 −4.8 −2.3
Shift L/2 SIRi 15.5 10.8 14.0 13.8

SDRi 5.0 4.7 6.1 7.3
Shift L/4 SIRi 16.5 12.1 15.2 14.5

SDRi 5.6 5.5 6.9 8.0
Shift L/8 SIRi 17.0 12.2 15.8 14.8

SDRi 5.8 5.6 7.1 8.3

even if we utilized a non-linear sensor arrangement. Table I
also shows the SIR and SDR values when we changed the
frame shift from 256(= L/2) to 64(= L/8). By using a fine-
shift (L/4 and L/8), the SDR values increase without any
reduction in the SIR values. This is because the fine-shift and
the overlap-add realize a gradual change in the spectrogram
of the separated signal [9].

We also applied our method to a non-uniform 3-dimensional
sensor arrangement for a five sources and four sensors case
(Fig. 4). Here, the system knew just the maximum distance
(dmax =5.5 cm) between the reference microphone (Mic. 1)
and the others. Table II shows the separation results. We can
see from Table II that our proposed method can be applied to
such a non-uniform 3-dimensional microphone array system.

We have also considered the musical noise problem, which
usually occurs when we use a time-frequency binary mask like
(9). The results of subjective tests can be found in [10]. Some
sound examples can be found at [11].

D. Discussion

In this section, we discuss the advantages of our method
compared with some previous methods [2–6].

The first advantage of the proposed method is that we can
utilize a 2- or 3-dimensionally arranged sensor arrangement.
A previously adopted linear sensor array in [2–5] limits the
separation ability on a 2-dimensional half-plane: the previ-
ous methods cannot separate sources placed at symmetrical
positions with respect to the sensor axis. Let us show an
example. Figure 5 is an example histogram of the estimated
DOA when we use Mic. 1 and Mic. 2 in Fig. 2 for S1, S2 and
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TABLE II

EXPERIMENTAL RESULTS FOR M = 4, N = 5,

y1 y2 y3 y4 y5

InputSIRi −11.1 −3.0 −4.5 −10.6 −4.7
Shift L/2 SIRi 18.4 13.7 6.5 15.5 16.0

SDRi 2.8 4.6 3.5 3.3 6.3
Shift L/4 SIRi 20.1 15.0 6.9 16.6 17.7

SDRi 3.1 5.1 3.8 3.9 7.0
Shift L/8 SIRi 20.7 15.5 6.9 17.2 18.2

SDRi 3.3 5.2 3.9 4.1 7.2

S4. Although there were three sources, we can see only two
peaks in the histogram. This is because S1 and S4 came from
±45◦, and therefore, they could not be distinguished by Mic. 1
and Mic. 2. On the other hand, because our proposed method
makes it easy to employ a two-dimensional non-linear sensor
arrangement, we can cope with source arrangements such as
that shown in Fig. 2.

The second advantage is that the proposed normalization
of the observation vector allows us to cluster all the frequency
components together. Previously, [6] has utilized the method
for more than two sensors case, however, they still worked in
individual frequency bins. Therefore the (inner-)permutation
problem remains and a permutation error decreases the sep-
aration performance. By contrast, our frequency normalized
observation vector does not have this problem inherently.

The third advantage is that, unlike the previous DOA ap-
proach [5], we do not need to know the exact sensor locations.
We simply need the maximum distance dmax between a given
sensor and any other sensor. If we do not have the maximum
distance, we can still use an arbitrary (slightly large) figure as
dmax, and employ our proposed normalization method.

IV. CONCLUSION

We proposed a new method for underdetermined BSS by
clustering the normalized observation vectors. Our proposed
technique makes it easy to use a non-linear/non-uniform sensor
arrangement, and makes it possible to exploit information
obtained from all the sensors for separation. In this paper
we provided the results solely for underdetermined cases,
however, our proposed method can also be applied to (over-
)determined cases [10].

APPENDIX

This appendix explains why normalized observation vectors x̄(f, τ )
form a cluster for a source. Let us approximate the multi-path mixing
model (1) by using a direct-path (near-field) model (Fig. 6)

hjk(f) ≈ q(f)

djk
exp

�− 2πfc−1(djk − dJk)
�
, (14)

where djk > 0 is the distance between source k and sensor j. We
assume that the phase 2πfc−1(djk − dJk) depends on the distance
normalized with the distance to the reference sensor J . We also
assume that the attenuation q(f)/djk depends on both the distance
and a frequency-dependent constant q(f) > 0.

Substituting (14) and (4) into (6) and (7) yields

x̄j(f, τ ) ≈ 1

djkD
exp

�
−

π

2

(djk − dJk)

dmax

�
, D =

��M
j=1

1

djk
2
,
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Fig. 5. Example histogram of DOAs for S1, S2 and S4 with sensors 1 and
2 in Fig.2 condition.

which is independent of frequency, and dependent only on the
positions of the sources and sensors. That is, the observation vectors
are clustered based on the source geometry. From the fact that
maxj,k |djk − dJk| ≤ dmax, an inequality

−π/2 ≤ arg[x̄j(f, τ )] ≤ π/2

holds. This property is important for the distance measure (8), since
|x̄ − x̄′| increases monotonically as | arg(x̄) − arg(x̄′)| increases.

sensor

source

Fig. 6. Direct-path (near-field) model
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