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Abstract

This paper presents a new method for blind sparse source separation. Some sparse source separation methods, which

rely on source sparseness and an anechoic mixing model, have already been proposed. These methods utilize level ratios

and phase differences between sensor observations as their features, and they separate signals by classifying them.

However, some of the features cannot form clusters with a well-known clustering algorithm, e.g., the k-means. Moreover,

most previous methods utilize a linear sensor array (or only two sensors), and therefore they cannot separate symmetrically

positioned sources. To overcome such problems, we propose a new feature that can be clustered by the k-means algorithm

and that can be easily applied to more than three sensors arranged non-linearly. We have obtained promising results for

two- and three-dimensionally distributed speech separation with non-linear/non-uniform sensor arrays in a real room even

in underdetermined situations. We also investigate the way in which the performance of such methods is affected by room

reverberation, which may cause the sparseness and anechoic assumptions to collapse.

r 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Blind source separation (BSS) [1] is an approach
for estimating source signals that uses only the
mixed signal information observed at each sensor.
The BSS technique for speech dealt with in this
paper has many applications including hands-free
teleconference systems and automatic conference
minute generators.
e front matter r 2007 Elsevier B.V. All rights reserved
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Two approaches have been widely studied and
employed to solve the BSS problem; one is based on
independent component analysis (ICA) (e.g., [2])
and the other relies on the sparseness of source
signals (e.g., [3]). Recently, many ICA methods have
been proposed even for the convolutive BSS
problem [2,4–10]. ICA works well even in a
reverberant condition when the number of sources
N is less than or equal to the number of sensors M.
On the other hand, the sparseness-based approaches
are attractive because they can handle the under-
determined problem, i.e., N4M.

The sparseness-based approaches can be divided
into two main categories. One method is based on
.
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MAP estimation, where the sources are estimated
after mixing matrix estimation [11–17], and the
other extracts each signals with time-frequency
binary masks [3,18–20]. The former method in-
cludes mixing matrix estimation and l1-norm mini-
mization in the frequency domain (i.e., for complex
numbers), both of which still present difficulties [16].
The latter, the binary mask approach, has the
advantage of being implemented in real time [21]. In
this paper we focus on the binary mask approach.

In the binary mask approach, we assume that
signals are sufficiently sparse, and therefore, we can
assume that at most one source is dominant at each
time–frequency slot. If this assumption holds, a
histogram of the level and frequency normalized
phase differences between two sensor observations
has N clusters [3,18,20]. Because an individual
cluster in the histogram corresponds to an indivi-
dual source, we can separate each signal by selecting
the observation signal at time–frequency points in
each cluster with a binary mask. The best-known
approach may be the Degenerate Unmixing Estima-
tion Technique (DUET) [3,18,21].

Previously, such clustering was performed manu-
ally [3,18], by using kernel density estimation [20],
or with an ML-based gradient method [21]. On the
other hand, if clustering could be performed with a
well-known algorithm such as the k-means cluster-
ing or hierarchical clustering [22], the clustering will
be automated and simplified. To employ a widely
utilized clustering algorithm such as the k-means,
we should be careful about the variances of multiple
variables, in this case the level ratios and phase
differences. However, frequency normalization of
the phase difference, which is important in terms of
avoiding the permutation problem among frequen-
cies [16,17], sometimes makes the phase difference
much smaller than the level ratio as shown in
Section 3.2. Such different variances between the
features make clustering with the k-means difficult.
This is the prime motivation for this work.

Our second motive is to employ more than three
sensors arranged two- or three-dimensionally, which
could have a non-linear/non-uniform alignment.
Only a few authors have generalized [16,17,23] a
method for more than two sensors. Authors of [23]
used up to eight sensors, however, their sensors were
still linearly arranged. The paper [24] has already
tried a multichannel DUET (DESPRIT) by com-
bining the sparse assumption and the Estimation of
Signal Parameters via Rotational Invariance Tech-
nique (ESPRIT); however, their method still limits
the array shape: a linear array or two sets of
congruent arrays. A two-sensor system and a linear
sensor array limits the separation ability on a two-
dimensional half-plane, e.g., the previous methods
cannot separate sources placed in a mirror image
arrangement. To allow the free location of sources,
we need more than three sensors arranged two- or
three-dimensionally.

Based on these two motivations, we propose a
new binary mask approach MENUET (Multiple
sENsor dUET), which employs the well-known
k-means clustering algorithm. As a feature, our
method utilizes the level ratios and phase differences
between multiple observations. To realize level ratio
and phase difference variances of a comparable
level, we propose a way of weighting the phase term
for successful clustering. Moreover, our proposed
method does not require sensor location informa-
tion. This allows us to employ freely arranged
multiple sensors easily. Therefore, the proposed
method can separate signals that are distributed
two- or three-dimensionally. Our previous paper,
[16], utilized a two-dimensional sensor array to test
the MAP approach proposed in [16]. However, that
work did not employ the frequency normalization,
and therefore, suffered from the abovementioned
permutation problem. On the other hand, in this
paper, we employ appropriate frequency normal-
ization for the k-means algorithm. Moreover, we
also apply our proposed method to a three-
dimensional sensor array, and describe the result.

An additional contribution of this paper is that it
undertakes an investigation of the separation
performance in real world acoustic environments.
Both our proposed method and previous methods
employ assumptions of source sparseness and
anechoic mixing (i.e., a simple attenuation and
delay model for a room impulse response). Such
assumptions can easily be affected by reverberation.
We show how the performance is affected when the
problem does not satisfy the assumed conditions.

The organization of this paper is as follows.
Section 2 presents the basic framework of the binary
mask-based BSS method. In Section 3, we describe
some features for clustering, and test how each
feature will be clustered by the k-means clustering
algorithm. In Section 4, we propose a novel method
MENUET, which includes the estimation of geo-
metric features from multiple sensor observations.
Our proposed feature is suitable for k-means
clustering. Section 5 reports some experimental
results obtained with non-linearly arranged sensors
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in underdetermined scenarios. Even when the
sources and sensors were distributed two- or three-
dimensionally, we obtained good separation results
with the k-means algorithm for each scenario under
weak reverberant ðRT60 ¼ 128msÞ conditions. We
also investigated the performance under more
reverberant conditions ðRT60 ¼ 300msÞ. The final
section concludes this paper.

2. Binary mask approach to BSS

2.1. Problem description

Suppose that sources s1; . . . ; sN are convolutively
mixed and observed at M sensors

xjðtÞ ¼
XN

k¼1

X
l

hjkðlÞskðt� lÞ; j ¼ 1; . . . ;M, (1)

where hjkðlÞ represents the impulse response from
source k to sensor j. In this paper, we focus
particularly on a situation where the number of
sources N can exceed the number of sensors M

(N4M). We assume that N and M are known, and
that the sensor spacing is small enough to avoid the
spatial aliasing problem. The goal is to obtain
separated signals ykðtÞ that are estimations of sk

solely from M observations.

2.2. Separation procedures

Step 1. Signal transformation to the time– fre-

quency domain: Fig. 1 shows the flow of the binary
mask approach. The binary mask approach usually
employs a time–frequency domain representation.
First, time–domain signals xjðtÞ sampled at fre-
quency f s are converted into frequency–domain
time-series signals xjðf ; tÞ with a T-point short-time
Fourier transform (STFT):

xjðf ; tÞ  
XT=2�1

r¼�T=2

xjðrþ tSÞwinðrÞe�|2pfr, (2)
x(f,t)
STFT

Feature

extraction

Θ(f,t)

Clustering

x1(t)

xM(t)

Ck

Fig. 1. Basic scheme of bin
where f 2 f0; ð1=TÞf s; . . . ; ððT � 1Þ=TÞf sg is a fre-
quency, winðrÞ is a window that tapers smoothly to
zero at each end, t is a new index representing time,
and S is the window shift size. As the window
winðrÞ, in this paper, we utilized a Hanning window
1
2
ð1� cosð2pr=TÞÞ (r ¼ 0; . . . ;T � 1).
There are two advantages to working in the

time–frequency domain. First, convolutive mixtures
(1) can be approximated as instantaneous mixtures
at each frequency:

xjðf ; tÞ �
XN

k¼1

hjkðf Þskðf ; tÞ (3)

or in a vector notation,

xðf ; tÞ �
XN

k¼1

hkðf Þskðf ; tÞ, (4)

where hjkðf Þ is the frequency response from source k

to sensor j, and skðf ; tÞ is a frequency–domain time-
series signal of skðtÞ obtained by the same operation
as (2), x ¼ ½x1; . . . ;xM �

T, and hk ¼ ½h1k; . . . ; hMk�
T is

a mixing vector that consists of the frequency
responses from source sk to all sensors. The second
advantage is that the sparseness of a source signal
becomes prominent in the time–frequency domain
[12,19], if the source is colored and non-stationary
such as speech. The possibility of skðf ; tÞ being close
to zero is much higher than that of skðtÞ. When the
signals are sufficiently sparse in the time–frequency
domain, we can assume that the sources rarely
overlap and, (3) and (4), respectively, can be
approximated as

xjðf ; tÞ � hjkðf Þskðf ; tÞ;
9k 2 f1; . . . ;Ng, ð5Þ

xðf ; tÞ � hkðf Þskðf ; tÞ;
9k 2 f1; . . . ;Ng, ð6Þ

where skðf ; tÞ is a dominant source at the time–
frequency point ðf ; tÞ. For instance this is approxi-
mately true for speech signals [3,15]. Fig. 2(a) shows
example spectra of three speech sources, in which
we can see their temporal/frequency sparseness.
Mask

design

ISTFT
yk(f,t)

yk(t)

Mk(f,t)

ary mask approach.
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Fig. 2. Example spectra of (a) speech sources, (b) observations, (c) masks and (d) separated signals (N ¼ 3, M ¼ 2).

S. Araki et al. / Signal Processing 87 (2007) 1833–18471836
Step 2. Feature extraction: If the sources skðf ; tÞ
are sufficiently sparse, separation can be realized by
gathering the time–frequency points ðf ; tÞ where
only one signal sk is estimated to be dominant. To
estimate such time–frequency points, some features
Hðf ; tÞ are calculated by using the frequency–do-
main observation signals xðf ; tÞ. Here, Hðf ; tÞ is a
vector that consists of certain geometric features.
Generally, the level ratios and phase differences
between observations are utilized for Hðf ; tÞ. Pre-
viously employed features are discussed in Section
3, and our newly proposed feature is introduced in
Section 4.

Step 3. Clustering: Then the features Hðf ; tÞ
are grouped into N clusters C1; . . . ;CN , where N is
the number of possible sources. Formerly, such
clustering was undertaken manually [3,18],
with a kernel density estimation [20] or with an
ML-based gradient method [21]. On the other
hand, if we can employ a standard clustering
algorithm such as the k-means algorithm or
hierarchical clustering [22], the clustering procedure
will be automated and simplified. In this work we
utilize the k-means clustering algorithm [22] with a
given source number N. The clustering criterion is
to minimize the total sum J of the Euclidean
distances (ED) between cluster members and their
centroids ck:

J ¼
XM
k¼1

Jk; Jk ¼
X

Hðf ;tÞ2Ck

kHðf ; tÞ � ckk
2. (7)
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After setting appropriate initial centroids ck

ðk ¼ 1; . . . ;NÞ, this J can be minimized by the
following iterative updates:

Ck ¼ fHðf ; tÞ j k ¼ argmin
k

kHðf ; tÞ � ckk
2g, ð8Þ

ck  E½Hðf ; tÞ�H2Ck
, ð9Þ

where E½��H2Ck
is a mean operator for the members

of a cluster Ck. The cluster members are determined
by (8). If the feature Hðf ; tÞ is properly chosen, then
each cluster corresponds to an individual source.

Here, it should be noted that the k-means
clustering utilizes the ED kHðf ; tÞ � ckk

2, not the
Mahalanobis distance (MD) ðHðf ; tÞ � ckÞ

TR�1k

ðHðf ; tÞ � ckÞ, where Rk is the covariance matrix of
cluster k. That is, k-means assumes clusters of a
multivariate isotropic variance Rk ¼ I for all k,
where I denotes an identity matrix.

Step 4. Mask design: Next, the separated signals
ykðf ; tÞ are estimated based on the clustering result.
We design a time–frequency domain binary mask
that extracts the time–frequency points of each
cluster

Mkðf ; tÞ ¼
1; Hðf ; tÞ 2 Ck;

0 otherwise.

(
ð10Þ

Example of binary mask spectra is shown in Fig. 2(c).
Then, applying the binary masks (Fig. 2(c)) to one of
the observations (Fig. 2(b)) xJ ðf ; tÞ, we obtain
separated signals (Fig. 2(d)):

ykðf ; tÞ ¼Mkðf ; tÞxJðf ; tÞ,

where J is a selected sensor index.
Step 5. Separated signal reconstruction: At the end

of the flow (Fig. 1), we obtain outputs ykðtÞ by
employing an inverse STFT (ISTFT) and the
overlap-and-add method [25],

ykðtÞ ¼
1

A

XS�1
l¼0

ymþl
k ðtÞ; ð11Þ

where A ¼ 1
2
T=S is a constant for the Hanning

window case,

ym
k ðtÞ ¼

P
f2 0;1Tf s;...;

T�1
T f sf gyðf ;mÞe

|2pfr;

ðmSptpmS þ T � 1Þ;

0 (otherwise);

8><
>:

and r ¼ t�mS.
3. Discussion of features

Because the binary mask approach depends
strongly on the clustering of the feature vectors
Hðf ; tÞ, the selection of an appropriate feature
vector Hðf ; tÞ is essential to this approach. In this
section, we provide examples of the features Hðf ; tÞ
including the previously utilized feature. We also
test how each feature will be clustered by the k-
means algorithm.
3.1. Features

Most previous methods utilized the level ratio
and/or phase difference between observations as
their features Hðf ; tÞ. The previously proposed
features can be summarized as

Hðf ; tÞ ¼
jx2ðf ; tÞj

jx1ðf ; tÞj
; arg

x2ðf ; tÞ

x1ðf ; tÞ

� �� �T
(12)

and some examples are shown in Table 1.
Such features (12) represent geometric informa-

tion on sources and sensors, if the sources are
sufficiently sparse. Let us assume that the mixing
process is expressed by

hjkðf Þ � ljk exp½�|2pf tjk�, (13)

where ljkX0 and tjk are the attenuation and the
time delay from source k to sensor j. If there is no
reverberation (i.e., an anechoic situation), ljk and tjk

are determined solely by the geometric distribution
of the sources and sensors. If the sources are sparse
(5), the feature vector (12) becomes

Hðf ; tÞ ¼
l2k

l1k

;�2pf ðt2k � t1kÞ

� �T
; 9k. (14)

We can see that Hðf ; tÞ contains geometric informa-
tion on the dominant source sk at each time-
frequency point ðf ; tÞ.

To avoid frequency dependence in the phase
difference (14), some authors have employed a
frequency normalization that involves dividing the
phase difference by 2pf or 2pfc�1d where c is the
propagation velocity and d is the sensor spacing (see
Table 1). The former is utilized in [3,18] and the
latter gives the directions of arrival (DOA) of
sources if the sensor spacing d is given correctly
[26]. If we do not use such frequency normalization,
we have to solve the permutation problem among
frequencies after clustering the features [16,17].
Moreover, frequency normalization makes it
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Table 1

Typical features and their separation performance (SIR improvement in dB) with the k-means algorithm

Feature Hðf ; tÞ k-means Opt.(ED) Opt. (MD)

(A) jx2ðf ;tÞj
jx1ðf ;tÞj

; 1
2pf

arg x2ðf ;tÞ
x1ðf ;tÞ

h ih iT [18] 1.9 8.3 14.0

(B) jx2ðf ;tÞj
jx1ðf ;tÞj

; 1
2pfc�1d

arg x2ðf ;tÞ
x1ðf ;tÞ

h ih iT 5.7 14.1 14.0

ðAÞ0
jx2ðf ;tÞj
jx1ðf ;tÞj

� 1
jx2 ðf ;tÞj
jx1 ðf ;tÞj

; 1
2pf

arg x2ðf ;tÞ
x1ðf ;tÞ

h i" #T [3] 1.8 7.9 14.0

(C) 1
2pf

arg x2ðf ;tÞ
x1ðf ;tÞ

h i
10.5 14.0 14.0

(D) 1
2pfc�1d

arg x2ðf ;tÞ
x1ðf ;tÞ

h i
[26] 11.6 14.0 14.0

(E) jx1ðf ;tÞj
Aðf ;tÞ ;

jx2ðf ;tÞj
Aðf ;tÞ ;

1
2pf

arg x2ðf ;tÞ
x1ðf ;tÞ

h ih iT 5.2 7.9 14.3

(F) jx1ðf ;tÞj
Aðf ;tÞ ;

jx2ðf ;tÞj
Aðf ;tÞ ;

1
2pfc�1d

arg x2ðf ;tÞ
x1ðf ;tÞ

h ih iT 12.4 14.1 14.2

(G) Ȳjðf ; tÞ ¼ jxjðf ; tÞj exp |
arg½xj ðf ;tÞ=xJ ðf ;tÞ�

aj f

h i
12.2 14.1 14.1

Hðf ; tÞ  H̄ðf ; tÞ=kH̄ðf ; tÞk

‘‘opt.’’ shows the performance with the known centroid and two distance measures: the Euclidean distance (ED) (8) and the Mahalanobis

distance (MD). N ¼ 3, M ¼ 2. The performance difference between features C and D was caused by the convergence criteria for the

k-means. Aðf ; tÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPM

j¼1jxjðf ; tÞj
2

q
. aj : A weight parameter introduced in Section 4.1.
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possible to apply the method to short data without
significant performance degradation [27].

3.2. Clustering result with k-means algorithm

Previously, features Hðf ; tÞ were clustered manu-
ally [3,18], or with an ML-based gradient method
[21]. In contrast, in this subsection, we attempt to
employ the well-known k-means clustering algo-
rithm [22], which can both automate and simplify
the clustering. We show that the previously utilized
feature (A) cannot be clustered well by the k-means
algorithm and provide possible reasons for this.

Table 1 shows the separation performance (the
signal to interference ratio (SIR) improvement: see
Appendix A) when we cluster each feature with the
k-means algorithm. In Table 1, we also show the
optimal results with known centroid values, which
are calculated with known sources and impulse
responses (unblind). Here, we utilized two omnidir-
ectional microphones with a 4 cm spacing for three
speech sources set at 30�, 70� and 135�, where the
distance between the microphones and sources was
50 cm and the room reverberation time was 128ms.
We investigated eight combinations of speakers and
averaged the separation results. From Table 1, it
can be seen that all features perform similarly when
the centroids are known and MD-based clustering is
used. Therefore, the separation problem amounts to
finding a feature that leads to accurate centroid
estimates blindly. However, we can also see that
some features (A), ðAÞ0, (B) and (E) cannot achieve
good separation performance with the k-means.

There are two main reasons for this. The first
is related to the outliers of the level ratio jx2j=jx1j.
Fig. 3 shows examples. We can see several large
values in the level ratio of (A), although we used
omnidirectional microphones where jx2j=jx1j � 1.
Due to the outliers in the level ratio, the phase of
(A) cannot be clustered (Fig. 3 (A)), although the
phase terms themselves can be clustered (Table 1
(C)). This is the reason for the poor performance
with (A) and (B). Such outliers occur at too many
time-frequency points for them to be removed
without degrading the separated sound quality.

We found that when we normalize the level ratios
as seen in features (E) and (F), they become p1 and
prevent such outliers (Fig. 3 (F)). Therefore,
features (E) and (F) provide better performance
than (A) and (B). However, the performance with
(E) is still insufficient.

This suggests a second reason: namely that the
phase term of feature (A) is too small. This is more
important and more fatal than the first reason. For
multivariate clustering with the k-means algorithm,
the level ratios and phase differences should have
similar variances. This is because the k-means
assumes distributions of isotropic variance. How-
ever, the phase term of feature (A) is far smaller
(Fig. 3 (A)) than the level ratio. The poor
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Fig. 3. Example histograms with features (A) and (F). For each feature, top: histogram of the level ratio term of each feature, bottom left:

the contour plot of the two-dimensional histogram, bottom right: histogram of the phase difference term of each feature. In the contour

plots, � denotes the cluster centroids ck obtained by the k-means algorithm. In (F), we plot only two components

½jx1ðf ; tÞj=Aðf ; tÞ; 1=2pfc�1d arg½x2ðf ; tÞ=x1ðf ; tÞ��
T.
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Table 2

Performance (SIR improvement in dB and SDR in dB: see

Appendix A for the definitions) and computation time with the k-

means algorithm and the GMM fitting

k-means GMM

Feature SIR

imprv.

SDR time (s) SIR

imprv.

SDR time (s)

(A) 1.9 7.5 5.0 11.8 9.4 26.3

ðAÞ0 1.8 7.5 7.1 11.3 9.8 26.3

(E) 5.2 6.0 4.6 12.8 8.8 33.7

(F) 12.4 10.3 2.5 14.2 9.7 26.5

N ¼ 3, M ¼ 2. GMM fitting needed 6 Gaussians.

S. Araki et al. / Signal Processing 87 (2007) 1833–18471840
performance with (A) and (E) result from this
imbalance between the level ratio and phase
difference terms. With features (B) and (F), where
the phase is divided by 2pfc�1d, the phase difference
becomes larger (see Fig. 3 (F)). Therefore, feature
(F), where both the level ratios and phase difference
are normalized appropriately, achieves good per-
formance (see Table 1) with the k-means algorithm.

It should be noted that if we can handle the
different variance with, for example the Gaussian
mixture model (GMM) fitting, features (A) and (E)
can also work as shown in Table 2. In our
experiments, the GMM fitting with only N ¼ 3
Gaussians did not work. We needed 6 Gaussians for
the successful fitting, and therefore, utilized the
posteriors of 3 dominant Gaussians as separation
masks. This selection of the number of Gaussians
required a lot of trial and error. Furthermore, it
should be noted that we had to set appropriate
initial values for the mean and variance of the
Gaussians carefully for the GMM fitting. If the
selection is successful, the GMM fitting works. If
not, it does not work at all. Table 2 shows that the
appropriate GMM can achieve reasonable perfor-
mance even for features (A) and (E). From Table 2,
we can say that the reason for the poor performance
with the k-means for features (A) and (E) arises
from the different variances of the level ratio and
the phase difference.

We would like to note that the GMM fitting
needs sufficient computational time. Table 2 also
gives the calculation time with the k-means and
GMM fitting. Here, we separated mixtures of 5 s
with AthlonXP 3200þ and MATLAB 6.5. The
calculation time was measured with the cputime
command of MATLAB. The computation time
provided in Table 2 is the averaged result for eight
speaker combinations. We can see from Table 2 that
the k-means with feature (F) achieves sufficiently
high performance with a shorter computational
time than realized with the GMM fitting. The small
computational cost of the k-means is attractive.

In conclusion, we found that feature (F) provides
more accurate clustering result than other features
when either the GMM fitting or the k-means
clustering are employed. Moreover, clustering
is successfully and effectively executed with the
k-means, when we use normalized level ratios and
phase differences such as feature (F) (see Fig. 3 (F)
and Table 1 (F)).

4. Proposed new feature

Based on the clustering results described in the
previous section, we propose a new feature that can
be clustered by the k-means algorithm. We also
extend the feature to a multiple sensor version,
where we can utilize more than three sensors
arranged non-linearly to separate two- or three-
dimensionally located sources. As our method can
be considered as an extension of the DUET, we call
our method Multiple sENsor dUET: MENUET.

Our proposed feature has the same property as
feature (F) in Section 3, that is, the level ratios and
phase differences are appropriately normalized. Our
new feature also has a parameter that controls the
weight for the level ratios and phase differences.
Moreover, our normalization does not require
sensor position information. This allows us to apply
our method to an arbitrarily arranged sensor array.

Because the basic scheme is the same as that in
Fig. 1, here we focus mainly on our new feature
vector.

4.1. New feature

Our new feature employs the normalized level
ratios and phase differences between multiple
observations:

Hðf ; tÞ ¼ ½HL
ðf ; tÞ;HP

ðf ; tÞ�T, (15)

where

HL
ðf ; tÞ ¼

jx1ðf ; tÞj

Aðf ; tÞ
; . . . ;
jxMðf ; tÞj

Aðf ; tÞ

� �
, ð16Þ

HP
ðf ; tÞ

¼
1

a1f
arg

x1ðf ; tÞ

xJðf ; tÞ

� �
; . . . ;

1

aMf
arg

xM ðf ; tÞ

xJðf ; tÞ

� �� �
ð17Þ
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In the above equations, Aðf ; tÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPM

j¼1jxjðf ; tÞj
2

q
, J

is the index of one of the sensors, and aj

(j ¼ 1; . . . ;MÞ is a positive weighting constant. By
changing aj, we can control the weights for the level
ratio and phase difference information of the observed
signals; a larger value puts weight on the level ratio
and a smaller value emphasizes the phase difference.

The normalized level ratio has the property of
0pYL

j ðf ; tÞp1, where YL
j is the jth component of

HL. This can prevent the outliers discussed in the
previous section.

An appropriate value for the phase weight is
aj ¼ a ¼ 4pc�1dmax, where c is the propagation
velocity and dmax is the maximum distance1 between
sensor J and sensor 8j 2 f1; . . . ;Mg. Let us provide
the reason for this. Here, we use the mixing model
(13) and, without loss of generality, we assume that
the delay parameter tjk is determined by the path
difference ljk � lJk:

tjk ¼ ðljk � lJkÞ=c, (18)

where ljk is the distance from source k to sensor j.
We also use the fact that the maximum distance
dmax between the sensors is greater than the
maximum path difference:

max
j;k
jljk � lJkjpdmax.

Using these assumptions and the mixing model (13),
YP

j ðf ; tÞ, which is the jth component of HPðf ; tÞ,
becomes

1

aj f
arg

xjðf ; tÞ

xJðf ; tÞ

� �
¼

2pc�1ðljk � lJkÞ

aj

p
2pc�1dmax

aj

.

(19)

Because the level ratio is normalized to have the
range 0pHL

ðf ; tÞp1, the phase difference YP
j ðf ; tÞ

should also be normalized so that it has a similar
range. If we allow YP

j ðf ; tÞ to have the range
�1

2
pHP

ðf ; tÞp1
2

(note that YP
j ðf ; tÞ can take a

negative value), we have equality in (19) when
aj ¼ a ¼ 4pc�1dmax. That is, a ¼ 4pc�1dmax realizes
the same range width as that of the level ratio.

4.2. Modified proposed feature

We can modify our proposed new feature (15) by
using the complex representation,

Yjðf ; tÞ ¼ YL
j ðf ; tÞ exp½|Y

P
j ðf ; tÞ�, (20)
1If we do not have an accurate value for dmax, we may use a

rough positive constant, as shown in Section 5.2.4.
where YL
j and YP

j are the jth components of (16)
and (17). This modification can also be realized
by [28]

Ȳjðf ; tÞ ¼ jxjðf ; tÞj exp |
arg½xjðf ; tÞ=xJ ðf ; tÞ�

aj f

� �
, ð21Þ

Hðf ; tÞ  H̄ðf ; tÞ=kH̄ðf ; tÞk, ð22Þ

where H̄ðf ; tÞ ¼ ½Ȳ1ðf ; tÞ; . . . ; ȲM ðf ; tÞ�
T. Feature

(22) is our modified feature, where the phase
difference information is held in the argument term
(21), and the level ratio is normalized by the vector
norm normalization (22). The weight parameter aj

has the same property as (15); however, a ¼
4c�1dmax should be the lower limit for successful
clustering (see Appendix B).

Now the normalized vectors Hðf ; tÞ (22) are
M-dimensional complex vectors, and therefore the
clustering of the features will be carried out in an M-
dimensional complex space. The unit-norm normal-
ization (22) makes the distance calculation in the
clustering (7) easier, because it projects the vec-
tor on a hyper unit sphere. If the features Hðf ; tÞ
and the cluster centroid ck are on the unit sp-
here, i.e., kHðf ; tÞk ¼ kckk ¼ 1, the square distance
kHðf ; tÞ � ckk

2 ¼ 2ð1�ReðcH
k Hðf ; tÞÞÞ. That is, the

minimization of the distance kHðf ; tÞ � ckk
2 is

equivalent to the maximization of the real part of
the inner product cH

k Hðf ; tÞ, whose calculation is less
demanding in terms of computational complexity.
5. Experiments

5.1. Experimental conditions

We performed experiments with measured im-
pulse responses hjkðlÞ in a room as shown in Figs. 4
and 5. The room reverberation times RT60 were 128
and 300ms. We used the same room for both
reverberation times but changed the wall condition.
We also changed the distance R between the sensors
and sources. The distance variations were R ¼ 50,
110, and 170 cm (see Figs. 4 and 5). Mixtures were
made by convolving the measured impulse re-
sponses in the room and 5-s English speeches. For
the anechoic test, we simulated the mixture by using
the anechoic model ((13) and (18)) and the mixture
model (1). The sampling rate was 8 kHz. The STFT
frame size T was 512 and the window shift was T=4.

Unless otherwise noted, we utilized modified
feature (22) with aj ¼ a ¼ 4c�1dmax for the feat-
ures, because the computational cost of distance
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calculation is lowered (see Section 4.2). We utilized
the k-means algorithm for the clustering, where the
number of sources N was given. We set the initial
centroids of the k-means using the far-field model
where the frequency response hjkðf Þ is given as
hjkðf Þ � exp½�|2pfc�1dTj qk�, and using the same
normalization as each feature. Here, c is the
propagation velocity of the signals, and the three-
dimensional vectors dj and qk represent the location
of sensor j and the direction of source k, respectively
[29]. The sensor locations dj (j ¼ 1; . . . ;MÞ were on
almost the same scale in each setup, and the initial
directions qk were set so that they were as scattered
as possible. Concretely, we utilized the sensor vector
qk ¼ ½cos yk cosfk; sin yk cosfk; sinfk�

T where the
azimuth of kth source was set as yk ¼ P� k

(k ¼ 1; . . . ;N, P ¼ 2p=N for MX3 and P ¼ p=N
for M ¼ 2), and the elevation fk ¼ 0 for all sources
k. Note that these initial values of d j and qk were
not exactly the same as those in each setup.

The separation performance was evaluated in
terms of the SIR improvement and the signal to
distortion ratio (SDR). Their definitions are found
in Appendix A. We investigated eight combinations
of speakers and averaged the separation results.

5.2. Separation results

5.2.1. With two sensors

First, we tested our feature with two sensors
under the condition described in Section 3, and
compared the result with that of previous features.
Table 1 in Section 3.2 shows the result. The
proposed feature (15) corresponds to (F) and the
modified feature (22) is shown as (G). We obtained
better separation performance with our proposed
features than with other features (A)–(E). A
comparison of the performance achieved with our
proposed method and with the GMM fitting is
shown in Table 2. The comparison was investigated
only for the two sensor case. Our proposed feature
(F) achieves high performance with the k-means
within a shorter computation time than with the
GMM fitting. Moreover, we can see that our
proposed feature (F) is also suitable for the GMM
fitting. A comparison with the MAP approach can
be found in [16]. In [16], it is shown that the
proposed method yields better performance in terms
of SIR than the MAP approach. It is also pointed
out that proposed method causes larger non-linear
distortion in its outputs than the MAP approach.

We also compared our proposed method with the
DESPRIT algorithm [24], using a linear array of
three microphones for four sources. It should be
noted that the previous DESPRIT limits its array
shape to a linear array or two sets of congruent
arrays, as discussed in Section 1. In the experiments,
we did not see big difference in performance
between our MENUET and the DESPRIT. That
is, the proposed MENUET also works with a linear
array (i.e., one-dimensional array).

Note that two sensors/linear arrays do not work
when the sources are placed at axisymmetrical
locations with respect to the microphone array,
because they have the equivalent features in (12).

5.2.2. With two-dimensional three sensors

Here, we show the separation results obtained
with three sensors arranged two-dimensionally
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(Fig. 4). Note that sources were also distributed
two-dimensionally.

Fig. 6(a) shows the separation result when N ¼ 4
and M ¼ 3. We can see that our proposed method
achieved good separation performance with the
non-linear sensor arrangement. We also evaluated
the performance for N ¼ 5;M ¼ 3, where the
source positions were 45�, 120�, 210�, 280� and
345�, and obtained good performance (Fig. 6(b)).

5.2.3. With four sensors

We also applied our method to a three-dimen-
sional sensor array arranged non-uniformly (Fig. 5).
Here, the system knew only the maximum distance
dmax (5.5 cm) between the reference microphone and
the others. To avoid the spatial aliasing problem, we
utilized frequency bins up to 3100Hz in this setup.
Fig. 6(c) shows the separation result when N ¼ 5
and M ¼ 4. Fig. 6(c) shows that our proposed new
feature can be applied to such three-dimensional
microphone array systems.

5.2.4. Weight parameter a
Here, we examine the relationship between the

phase weight parameter a and the separation
performance. As mentioned in Section 4.1, when
a is large the level ratio is emphasized, and when a is
small the phase difference is emphasized. Fig. 7
shows the relationship when N ¼ 4 and M ¼ 3
(Fig. 4) with the proposed feature (15) and the
modified feature (22). Note that a ¼ 2p corresponds
to the previous feature (A) (Table 1).

Fig. 7(a) shows the result with the proposed
feature (15). It achieved high performance when a
was sufficiently small. This is because the phase
difference between the sensors was more reliable
than the level ratio, due to our microphone setup.
As a became small, the performance saturated.
On the other hand, the performance degraded as
a became large. This is caused by the imbalance
between level ratio and phase difference terms,
because the phase term becomes too small when
a becomes large.

With modified feature (22), we obtained the best
performance around a ¼ 4c�1dmax (Fig. 7(b)). This
is because a ¼ 4c�1dmax realizes the full use of the
phase difference information (Appendix B), which is
preferable for our sensor setting. As a became large,
the performance degraded. When ao4c�1dmax the
performance also worsened. It should be remem-
bered that, with the modified feature, a ¼ 4c�1dmax

should be the lower limit (see Section 4.2). When
ao4c�1dmax, the distance measure (7) for the
clustering is not evaluated correctly (see Appendix
B), and therefore, the clustering stage failed and the
performance worsened.

We can also see from Fig. 7 that both proposed
features (15) and (22) achieved good performance
over a wide a range. This means that we do not need
the exact maximum sensor spacing dmax. This allows
us to utilize an arbitrarily arranged sensor array,
although similar distances between pairs of sensors
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Fig. 7. Relationship between a and separation performance when

N ¼ 4, M ¼ 3, R ¼ 50 cm, and RT60 ¼ 128ms. (a) with feature

(15) and (b) with modified feature (22). In (a), ‘‘P’’ denotes the

performance with H ¼ HP, and ‘‘L’’ means with H ¼ HL.

Table 3

Average clarity index [dB]

R ¼ 50 cm R ¼ 110 cm R ¼ 170 cm

RT60 ¼ 128ms 45.5 40.8 36.6

RT60 ¼ 300ms 40.5 34.9 32.7
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are preferable so that the k-means can use all sensor
information optimally.

5.3. Discussion

Fig. 6 also shows the performance tendency in
reverberant conditions. The performance degrades
as the reverberation time RT60 becomes long.
Moreover, performance degradation was observed
as the distance R became large. This is because,
under long reverberation and/or large distance R

conditions, the direct sound contribution to the
impulse responses becomes smaller, and the source
sparseness (5) and anechoic assumptions (13)
cannot hold.

We assessed the way in which reverberation time
and distance R affect the source sparseness (5) and
anechoic assumptions (13). Table 3 shows the
average clarity index C ([30] and Appendix C),
which explains the ratio between direct sound and
reverberant sound. Small (large) C means the
reverberant sound (direct sound) is large. We can
see from Table 3 that the clarity index C becomes
small as the reverberation time and distance R

increase. That is, when the reverberation time is
long and distance R is large, the anechoic assump-
tion (13) seems to become corrupted. For the
sparseness measure, we employed the approximate
W-disjoint orthogonality rk ([3] and Appendix C).
Fig. 8 shows the approximate W-disjoint orthogon-
ality under some reverberant conditions. As the
sparseness increases the approximated W-disjoint
orthogonality rk increases, and vice versa. As seen in
Fig. 8, the sparseness decreases with increases in
both the reverberation time and distance R. That is,
the sparseness decreases when the contribution of
the direct sound is small (see Table 3). In addition,
we can see that an increase in the number of sources
also reduces the sparseness.

It is also important to mention non-linear
distortion in separated signals. There is non-linear
distortion (musical noise) in the outputs with our
method, just as there is in the outputs with the
previous binary mask approaches. The results of
subjective tests with 10 listeners can be found in [28].
Some sound examples can be found at [31].

6. Conclusion

We proposed a novel sparse source separation
method (MENUET) based on the normalization
and clustering of the level ratios and phase
differences between multiple observations. Our
proposed features can effectively employ the level
ratios and phase differences, and are clustered easily
by the well-known k-means algorithm. It should be
noted that the k-means is optimal when the clusters
are Gaussian; however, this is not always true even
for our proposed feature (F) (see Fig. 3 (F)).
However, as shown in this paper, the proposed
feature with the k-means achieved sufficiently
high performance. Moreover, our feature makes it
easy to employ multiple sensors arranged in a non-
linear/non-uniform way. We obtained promising
experimental results in a room with weak reverbera-
tion even under underdetermined conditions.
Although we provided results solely for under-
determined cases in this paper, our proposed
method can also be applied to (over-) determined
cases [28].

We also reported the separation performance
under some reverberant conditions, where the
sparseness and anechoic assumptions were deterior-
ating. From the results, we saw that the direct and
reverberant ratio is important for the current sparse
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source separation. The sparse source separation in
reverberant conditions is still an open problem.

Appendix A. Performance measures

The SIR improvement was calculated by

OutputSIRi � InputSIRi,

where

InputSIRi ¼ 10 log10

P
tjxJiðtÞj

2P
tj
P

kaixJkðtÞj
2
ðdBÞ, ðA:1Þ

OutputSIRi ¼ 10 log10

P
tjyiiðtÞj

2P
tj
P

kaiyikðtÞj
2
ðdBÞ, ðA:2Þ

where xJkðtÞ ¼
P

lhJkðlÞskðt� lÞ and yikðtÞ is the
component of sk that appears at output yiðtÞ:
yiðtÞ ¼

PN
k¼1yikðtÞ.

The SDR is employed to evaluate the sound
quality:

SDRi ¼ 10 log10

P
tjxJiðtÞj

2P
tjxJiðtÞ � byiiðt�DÞj2

ðdBÞ,

(A.3)

where b and D are parameters used to compensate
for the amplitude and phase difference between xJi

and yii.

Appendix B. Value of a for modified feature (21)

In this section, we show the required condition
for the phase weight parameter a for modified
feature (21). Because the modified feature (22) is a
complex vector, we have to consider the phase term
when we perform clustering. When a in (21) is too
large, the variance of the phase term becomes
smaller than that of the level term. On the other
hand, when a in (21) is too small, the phase changes
too fast and causes a kind of aliasing problem.
Moreover, it is important that the distance measure
(7) of the clustering holds the condition: jY�Y0j
increases monotonically as j arg½Y� � arg½Y0�j in-
creases. However, if the phase term is larger than
p=2, such a monotonic increase cannot hold. That is
the phase term should have the following relation-
ship:

�
p
2
p arg½Y�p

p
2
. (B.1)

Let us model the mixing process as (13) and,
without loss of generality, we assume that the delay
parameter tjk is determined by the path difference
ljk � lJk:

tjk ¼ ðljk � lJkÞ=c, (B.2)

where ljk is the distance from source k to sensor j.
This assumption makes tJk ¼ 0. Substituting the
mixing model (B.2) and (13), and the sparseness
assumption (5) into (21) and (22) yields

Hðf ; tÞ �
ljk

Dk

exp �|
2pc�1ðljk � lJkÞ

aj

� �
, (B.3)

where Dk ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPM
j¼1l

2
jk

q
.

From the condition (B.1) and Eq. (B.3), the lower
limit of a is given as

j arg½Y�j ¼
2pc�1ðljk � lJkÞ

aj

����
����

p
2pc�1dmax

aj

����
����p p

2
, ðB:4Þ

ajX4c�1dmax. ðB:5Þ

In (B.4), we used the fact that maxj;kjljk � lJkj

pdmax.
From (B.5), we can conclude that the phase

parameter a ¼ 4c�1dmax should be the minimum
value to maintain the relationship (B.1). In addition
(B.1) has equality when a ¼ 4c�1dmax, which means
that the phase difference information is most
scattered. That is, the weight with a ¼ 4c�1dmax

allows us to make full use of the phase difference
information. This is a preferable property for small
sensor array systems (e.g., see Section 5), where
phase differences between sensors are more reliable
than level ratios for clustering.
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Appendix C. Measures for reverberation and

sparseness assessments

The clarity index [30]

C ¼ 10 log10

R 80 ms

0 h2
ðtÞdtR1

80 ms h2
ðtÞdt

ðdBÞ

explains the ratio between direct and reverberant
sound. Small (large) C means the reverberant sound
(direct sound) is large.

The sparseness measure, that is the approximate
W-disjoint orthogonality, is defined as [3]

rkðzÞ ¼

P
ðf ;tÞkFðk;zÞðf ; tÞskðf ; tÞk

2P
ðf ;tÞkskðf ; tÞk

2
� 100ð%Þ, (C.1)

where Fðk;zÞ is a time-frequency binary mask that
has a parameter z

Fðk;zÞðf ; tÞ ¼
1 20 logðjskðf ; tÞj=jŷkðf ; tÞjÞ4z;

0 otherwise

�
(C.2)

and ŷkðf ; tÞ ¼ STFT½
PN

i¼1;iaksiðtÞ� (sum of interfer-
ence components). The approximate W-disjoint
orthogonality rkðzÞ indicates the percentage of the
energy of source k for time–frequency points where
it dominates the other sources by z dB. A larger
approximate W-disjoint orthogonality rkðzÞ means
more sparseness, and vice versa.
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