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ABSTRACT

We propose a new algorithm for blind source separation
(BSS), in which frequency-domain independent component
analysis (FDICA) and time-domain ICA (TDICA) are com-
bined to achieve a superior source-separation performance
under reverberant conditions. Generally speaking, conven-
tional TDICA fails to separate source signals under heavily
reverberant conditions because of the low convergence in
the iterative learning of the separation system. On the other
hand, the separation performance of conventional FDICA
also degrades seriously because the independence assump-
tion of narrow-bin signals collapses when the number of
frequency bins increases. In the proposed method, the sep-
arated signals of FDICA are regarded as the input signals
for TDICA, and we can remove the residual crosstalk com-
ponents of FDICA by using TDICA. The experimental re-
sults obtained under the reverberant condition reveal that
the separation performance of the proposed method is su-
perior to those of TDICA- and FDICA-based BSS methods.

1. INTRODUCTION

Blind source separation (BSS) is the approach taken to esti-
mate the original source signals using only the information
of the mixed signals observed in each input channel. This
technique is applicable to the realization of high-quality
hands-free speech recognition system. The BSS methods
based on independent component analysis (ICA) [1, 2] can
be classified into two groups in terms of the processing do-
main, i.e., frequency-domain ICA (FDICA) in which the
complex-valued separation matrix is calculated in the fre-
quency domain [3, 4], and time-domain ICA (TDICA) in
which the separation FIR filter matrix is calculated in the
time domain [5, 6]. The recently developed BSS techniques
can achieve a good source-separation performance under ar-
tificial or short reverberant conditions. However, the per-
formances of these methods under heavily reverberant con-
ditions degrade seriously because of the following problems.
(1) In conventional FDICA, the separation performance is
saturated before reaching a sufficient performance level be-
cause we transform the fullband signals into the narrow-
band signals and the independence assumption collapses in
each narrow-band [7]. (2) In conventional TDICA, the con-
vergence degrades because the iterative learning rule be-
comes more complicated as the reverberation increases [6].
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In order to resolve the problems, we propose a new BSS
algorithm called multistage ICA (MSICA), in which FDICA
and TDICA are combined. By using the proposed method,
we can achieve a superior separation performance even un-
der heavily reverberant conditions. The results of the signal
separation experiments reveal that the separation perfor-
mance of the proposed algorithm is superior to those of the
conventional ICA-based BSS methods.

2. SOUND MIXING MODEL

In general, the observed signals in which multiple source
signals are convoluted with room impulse responses are ob-
tained by the following equation:

P-1
z(t) =Y _ a(r)s(t—7), (1)
T=0

where x(t) = [z1(t),- -+ ,2x ()] is the observed signal vec-
tor and s(t) = [s1(t), -, s1(t)]" is the source signal vector
(see Fig. 1) . K is the number of array elements (micro-
phones) and L is the number of multiple sound sources. In
this study, we deal with the case of K = L = 2. Also,
a(7) = [ai;(7)]i; ([]i; denotes the matrix in which éj-th el-
ement is [-]) is the mixing filter matrix. P is the length of
the impulse response which is assumed to be an FIR filter
of thousands of taps because we introduce a model to deal
with the arrival lags among the elements of the microphone
array and the room reverberations.

3. CONVENTIONAL ICA AND PROBLEMS

3.1. FDICA

The conventional BSS based on FDICA is conducted with
the following steps: (1) transform the observed fullband
signals into the narrow-band signals, (2) optimize the sepa-
ration matrix in each frequency bin, and (3) reconstruct the
fullband separated signal from the narrow-band separated
signals. FDICA has the following advantages and disadvan-
tages.

Advantages:

(F1) It is easy to converge the separation filter in iterative
ICA learning because we can simplify the convolu-
tive mixture down to simultaneous mixtures by the
frequency transform.
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Figure 1: Blind source separation procedure performed in multistage ICA.
Disadvantages: MSICA is conducted with the following steps. In the

(F2) The separation performance is saturated before reach-
ing a sufficient performance level because the inde-
pendence assumption collapses in each narrow-band
[7] (see, e.g., Sect. 5.3).

(F3) Permutation among source signals and indeterminacy
of each source gain in each frequency bin.

Regarding the disadvantage (F3), various solutions have al-
ready been proposed [3, 8, 9, 10]. However, the collapse of
the independence assumption, (F2), is a serious and inher-
ent problem, and this prevents us from applying FDICA in
a real acoustic environment with a long reverberation.

3.2. TDICA

In the conventional BSS based on TDICA, each element of
the separation filter matrix is represented as a FIR filter.
We can optimize this separation filter system, by using the
fullband observed signals themselves. TDICA has the fol-
lowing advantages and disadvantages.

Advantages:

(T1) We can treat the fullband speech signals where the
independence assumption of sources usually holds.

Disadvantages:

(T2) The convergence degrades under reverberant condi-
tions because the iterative rule for FIR filter learning
is complicated.

It is known that TDICA works only in the case of mixtures
with a short-tap FIR filter, i.e., less than 100 taps. Also,
TDICA fails to separate source signals under real acoustic
environments because of the disadvantages (T2).

4. PROPOSED METHOD: MSICA

As described above, the conventional ICA methods have
some disadvantages. However, note that the advantages
and disadvantages of FDICA and TDICA are mutually com-
plementary, i.e., (F2) can be resolved by (T1), and (T2) can
be resolved by (F1). Hence, in order to resolve the disad-
vantages, we propose a new algorithm, MSICA, in which
FDICA and TDICA are combined (see Fig. 1).

first stage, we perform FDICA to separate the source sig-
nals to some extent with the high-stability advantages (F1)
of FDICA. In the second stage, we regard the separated sig-
nals of FDICA as the input signals for TDICA, and we re-
move the residual crosstalk components of FDICA by using
TDICA. Finally, we regard the output signals of TDICA as
the resultant separated signals. MSICA can achieve a high
stability and a separation performance superior to that of
conventional FDICA and TDICA. In the following sections,
we describe details of the ICA-learning rules for each stage.

4.1. First-Stage ICA: FDICA

In the first-stage ICA, we introduce the fast-convergence
FDICA proposed by one of the authors [4]. We perform the
signal separation procedure as described below (see FDICA
in Fig. 1).

In FDICA, first, the short-time analysis of observed sig-
nals x(t) is conducted by frame-by-frame discrete Fourier
transform (DFT). By plotting the spectral values in a fre-
quency bin of each microphone input frame by frame, we
consider them as a time series. Hereafter, we designate the
time series as X (f,t) =[X1(f,t), - -- , Xk (f,1)]T. Next, we
perform signal separation using the complex-valued inverse
of the mixing matrix, W® (f), so that the L time-series
output Z(f,t) = [ZP(f, 1), -+, 2" (f,£)]" becomes mutu-
ally independent; this procedure can be given as

Z(1.) = WONX). 2)
We perform this procedure with respect to all frequency
bins. Finally, by applying the inverse DF'T and the overlap-
add technique to the separated time series Z(f,t), we re-
construct the resultant source signals in the time domain,
z(t).

In conventional FDICA , the optimal W<f>(f) is ob-
tained by the following iterative equation [3]:

WL = W) +a[ding((2(2(£.1)2"(£.1),)
— (@02 )W, )

524



where (-); denotes the time-averaging operator, 7 is used to
express the value of the i-th step in the iterations, and «
is the step-size parameter. Also, we define the nonlinear
vector function ®(-) as

[@(Z1(f,1)), -+, @(Zu(f,1)]" (4)
tanh(Z (f, 1)) +j - tanh (27 (£,1)), (5)

O(Zi(f,t

)
)
where Re[Z;(f,t)] and Im[Z;(f,t)] are the real and imagi-
nary parts of Z;(f,t), respectively.

)
)
f

4.2. Second-Stage ICA: TDICA

The output signals from TDICA (i.e., the separated signals
of MSICA) can be given as

Z w®(r

where y(t) = [y1(¢), - ,yr(¢)]" is the resultant separated
signal vector of MSICA, w®(r) = [’LUZ(-;)(T)]ij is the sep-
aration filter matrix, and @ is the length of the separa-
tion filter. The selection of TDICA is an important issue
because the quality of resultant separated signals is deter-
mined by TDICA. In this study, we introduce three TDICA
algorithms, i.e.,

TDICA1: TDICA based on simultaneous decorrelation of
nonstationary signals,

TDICA2: TDICA based on combination of TDICA1 and
time-delayed decorrelation approach, and

TDICAS [12]:
Leibler divergence (KLD),

and compare these TDICA algorithms.

First, we drive the TDICA1 algorithm. This optimizes
the separation filter by minimizing the nonnegative cost
function which takes the minimum value only when the
second-order cross-correlation becomes zero if the source
signals are nonstationary. The cost function is defined as
follows (this cost function has been already proposed by
Kawamoto et al. [11], however their derivation of learning
rule includes mathematical error):

)} o

QBZ{ 6

where B is the number of local analysis blocks and (~>£b)
denotes the time-averaging operator for the b-th local anal-
ysis block. Equation (7) becomes zero only when y;(¢) and
y;(t) are uncorrelated for all of the local analysis blocks.
The correct iterative equation to minimize Q(w(t>(7')) is
given by [6]

[TDICA1]

z(t—71),

(6)

]T

det diag(y(t)y(t)T>Eb)
det(y()y(t)T),”

Q(’w(t)

B Q-1 _
%m—wwm+§;&j«w )
YOyt —7+d)")" — (diag(y(y®)");”)
Oyt =+ ") fw™ (), (8)

TDICA based on minimization of Kullbuck-
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where 3 is the step-size parameter. Since the Eq. (8) eval-
uates only off-diagonal of <y(7§)y(t)T>£b)7 we confirmed that
the iterative equation of Eq. (8) could not achieve a supe-
rior separation performance under the reverberant condi-
tion (see Sect. 5.4). Namely, the source separation is not
achieved by only using nonstationarity of signals. There-
fore we use not only nonstationarity of signals but also
time-delayed decorrelation approach. We expand Eq. (8)
to the following equation to evaluate the off-diagonal of

(y@®)ylt — 7+ d)™YY for all time delays 7 — d :
[TDICA2]
w2 (7)
B O
(tQ)
w P+ 5 3 5 {(dee(w®” t)

- diag(y(t)y(t — 7 + d) >ib) - (dlag<
(yOyt—r+ ") fwlP ()

>(b))
(9)

Choi proposed the TDICA algorithm which optimizes
the separation filter by minimizing the KLD between the
joint probability density function and the marginal prob-

ability density function of the separated signals [12]. The
KLD is given by
t
KLD@w" () = [ aty®)tos AU —ay(o), 10)
11T aw®)
I1=1 t=0

where p(-) is the joint probability density function, g(-)
is the marginal probability density function, and T is the
length of the separated signals. With a nonholonomic con-
straint, the iterative equation of the separation filter to min-
imize the K LD(w™ (7)) is given as (hereafter we designate
the iterative equation as “TDICA3”):

[TDICA3]

(t3)

(t3)
Wi

() = w?(r)
Q-1
+a2}&%0mmw
d=|

—(plyt)yt—T+ad)"

Jy(t—7+d)"),)
}'w<t3 (11)
where we define the nonlinear vector function ¢(-) as

d(y(t)) = [tanh(yi(t)), -, tanh(yr ()] "

In this study, we compare the MISICA1, MSICA2,
and MSICA3 in which FDICA followed by TDICAI1,
TDICA2, and TDICAZ2, respectively.

(12)

5. EXPERIMENTS AND RESULTS

5.1. Experimental Setup

A two-element array with the interelement spacing of 4 cm
is assumed. We determined this interelement spacing by
considering that the spacing should be smaller than half of
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Figure 2: Layout of reverberant room used in experiments.

the minimum wavelength to avoid the spatial aliasing ef-
fect; it corresponds to 8.5/2 cm in 8 kHz sampling. The
speech signals are assumed to arrive from two directions,
—30° and 40°. The distance between the microphone array
and the loudspeakers is 1.15 m (see Fig. 2). Two kinds
of sentences, those spoken by two male and two female
speakers selected from the ASJ continuous speech corpus
for research, are used as the original speech samples. The
sampling frequency is 8 kHz and the length of speech is
limited to within 3 seconds. Using these sentences, we ob-
tain 12 combinations with respect to speakers and source
directions. In these experiments, we use the following sig-
nals as the source signals: the original speech convolved
with the impulse responses specified by the reverberation
time of 300 ms. This corresponds to 2400-taps FIR filter
in 8 kHz. The impulse responses are recorded in a variable
reverberation time room as shown in Fig. 2.

5.2. Objective Evaluation Score

Noise reduction rate (NRR), defined as the output signal-
to-noise ratio (SNR) in dB minus input SNR in dB, is used
as the objective evaluation score in this experiment. The
SNRs are calculated under the assumption that the speech
signal of the undesired speaker is regarded as noise. The
NRR is defined as

NRR = (SNR(? —sNR{"), (13)
=1

2
SNR(O) _ log, Zf [Hu(f)Si(f)] 4
1 10 OgOZf|Hln(f)Sn(f)‘27 (1 )

Au(f)Si(f)P

sNRD = log, Zf| i

I 10log;q Zf [ A (F)Sn(£)|2 (15)

where SNR;O) and SNRZ(I) are the output SNR and the
input SNR, respectively, and | # n. Also, S;(f) is the
frequency-domain representation of the source signal, s;(¢),
H;;(f) is the element in the ¢ th row and the j th column of
the matrix H(f) = WMSICA (£) A(f) where W MSICA) (1)
denotes the entire separation process in MSICA including
both FDICA and TDICA and A(f) is the mixing matrix
which corresponds to the frequency-domain representation
of the room impulse responses described in Sect. 2.
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Figure 3: Relation between separation performances and
the number of frequency bins in conventional FDICA.
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Figure 4: Relation between the number of frequency bins
and the value of J defined by Eq. (16), which corresponds
to the independence of subband signals.

5.3. Relation between Separation Performance and
Number of Frequency Bins in FDICA

In order to confirm the independence problem of narrow-
band signals in FDICA ((F2) described in Sect. 3.1), we
carried out the preliminary experiment under the following
analysis conditions. The number of frequency bins (frame
length in DFT) is set to be from 32 to 4096, the frame
shift is 16 taps, the window function is a Hamming window,
the number of iterations in ICA is 30, and the step-size
parameter « for iterations is set to be 1.0 x 1075.

Figure 3 shows the NRR results for different numbers of
frequency bins in FDICA. As shown in Fig. 3, the NRR of
FDICA obviously degrades when the number of frequency
bins becomes too large, and the separation performance is
saturated before reaching a sufficient performance. This is
because we transform the fullband signals into the narrow-
band signals and the independence assumption collapses in
each frequency bin, particularly when the number of fre-
quency bins is large.

In order to confirm the fact, we newly define the fol-
lowing objective measure to quantify an independence, and
investigate the relation between the number of frequency
bins and the independence among subband signals.

(|[diae (¢ (2(7.0) 2" (1,0)),)
—(@(2(1.0)Z"(10),]) - (16)

J
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Figure 5: Trade-off relation among the independence of sub-
band signals and robustness against reverberation.

where || - || is frobenius norm of matrix. This measure J
is a part of the iterative equation (3) and has no dimen-
sion. Therefore the absolute value of J is meaningless itself,
however, the relative value between the different numbers
of frequency bins is important. If narrow-band signals be-
come mutually independent, the measure J becomes zero.
Also we can consider that the independence of subband
signals is high when J is small. In order to evaluate the
independence of real narrow-band speech signals, we car-
ried out the experiment in which the input signal, Y (f,t),
in Eq. (16) is regarded as the perfectly separated sources,
i.e., original speech samples. Figure 4 shows the relation
between the number of frequency bins and the value of J
which corresponds to the independence of subband signals.
Figure 4 shows that the independence decreases as the num-
ber of frequency bins increases, especially when the number
of frequency bins is large.

Above-mentioned experimental results clarify the dis-
advantage that the separation performance is saturated in
FDICA because we transform the fullband signals into the
narrow-band signals. We should lengthen the separation
filter (or FFT length for analysis) when we confront with a
long reverberation. In this case, however, the independence
of subband signals decreases. Thus, there is a trade-off
relation among the independence of subband signals and
robustness against reverberation as shown in Figure 5. On
the basis of these results, we should cascade another signal
processing analysis, e.g., TDICA, with FDICA to obtain
the further separation performances.

5.4. Comparison of Separation Performance between
MSICAs

We carried out the experiments using MSICA1, MSICAZ2,

and MSICAS3 to evaluate the contribution of TDICA1, TDICAZ2,

and TDICA3 for improving the separation performances
under reverberant conditions. The analysis conditions of
these experiments are as follows: the filter length @ is
set to be 2048taps, the maximum number of iterations is
500, and the step-size parameter § for iterations is set to
be 5.0 x 107* for TDICA1, 1.0 x 1072 for TDICA2, and
1.0 x 107% for TDICA3. As for the local analysis block for
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Figure 6: Comparison of separation performance between
MSICA1, MSICA2, and MSICA3.

TDICA1 and TDICA2, we divided the signals equally into
B parts (B = 1-10). We chose the optimal B and num-
ber of iterations for each combination of speaker because
the convergence is different for every combination. As for
the FDICA part in MSICA, the analysis conditions are the
same as those given in Sect. 5.3, except for the number of
frequency bins (which is fixed at 1024 bins).

Figure 6 shows the NRR results in the MSICA1, MSICA2
and MSICA3. Figure 6 shows that TDICA1 can not achieve
a signal separation under the reverberant condition. Com-
paring MSICA1 with MSICA2 in Fig. 6, we confirm that
TDICA2 can achieve a superior separation performance to
TDICA1. These results show that it is necessary to eval-
uate correlations of different times to achieve a superior
performance. TDICA3 can also achieve a superior separa-
tion performance to TDICA1. The separation performances
of MSICA2 and MSICA3 are superior to that of FDICA
and the improvements of the separation performance from
FDICA are not so different. Thus, the use of FDICA with
TDICA2 or TDICAS3 is effective in the proposed MSICA
structure.

5.5. Comparison between MSICA2 and MSICA3

In order to compare MSICA2 and MSICAS3 in detail, we
evaluate the separation performances of MSICA3 and MSICA2
with the various number of local blocks B. In TDICA2 part
in MSICA2, the utilization of large B is effective because
it can evaluate the nonstationarity of the signals. Figure 7
shows the NRR results in the MSICA3 and MSICA2 with
the various B. The separation performance is improved as
the B is increased, however, the larger B is not the best
for improving the separation performance. In addition, the
separation performances of MSICA3 and MSICA2 with the
optimal B are not so different. Therefore, MSICA3 is more
feasible than MSICA2 because MSICA3 does not require
the estimation of the optimal B.

5.6. Discussion on Combination Order in MSICA

As described in the previous section, the combination of
FDICA and TDICA can contribute to the improvement
of separation. In this combination, the advantage (F1) of
FDICA is useful in the initial step of separation procedure



and the advantage (T1) of TDICA is also useful in the later
step. Therefore we use FDICA as the first-stage ICA and
TDICA as the second-stage ICA. In order to confirm the
availability of this combination order, we compare the pro-
posed combination with the combination in which TDICA
is used in the first stage and FDICA is used in the second
stage ( hereafter we designate this swapped combination as
"MSICA4”).

The experiment of MSICA4 was carried out in the fol-
lowing manner. As for TDICA part in MSICA4, TDICA2
is used, the number of local analysis blocks, B, is fixed at
3, and the filter length is 8 taps improved best the sepa-
ration performance in TDICA2. This TDICA2 can obtain
the NRR of 6.0 dB. As for FDICA part in MSICA4, the
analysis conditions are the same as those given in Sect. 5.3,
except for the number of frequency bins (which is fixed at
1024 bins). As the result, the NRR of 7.5 dB is obtained in
MSICAA4, and this performance is better than that of simple
TDICA but is poorer than those of MSICA2, MSICA3, and
simple FDICA. In MSICA4, the separation performance is
still improved by using FDICA in the second stage, how-
ever, the separation performance is saturated because of
the disadvantage (F2) of FDICA. MSICA4 can not achieve
the separation performance of 9.4 dB which corresponds to
NRR of simple FDICA. This reason is that FDICA in this
paper uses the beamforming technique and the directivity
pattern of the array which provide a good initial value of the
separation matrix to improve the convergence [4], however,
such kind of information is no longer valid in the combina-
tion order of MSICA4 because we can not know the effective
positions of the array elements after the first-stage TDICA
and can not depict the directivity pattern. Thus the sepa-
ration performance of MSICA4 is almost equal to that of a
raw FDICA without the beamforming technique (from [4]
we can see the NRR of about 7.5 dB at the 30-iteration
point). This fact indicates that the swapped combination
order of MSICA4 has no contribution to the improvement
of the separation performance, and the proposed combina-
tion order of MSICA2 and MSICA3 (FDICA in the first
stage and TDICA in the second stage) is essential.

6. CONCLUSION

In this paper, we propose a new algorithm for BSS, in
which FDICA and TDICA are combined to achieve a supe-
rior source-separation performance under reverberant con-
ditions. In TDICA part in MSICA, we compare (1) TDICA
based on simultaneous decorrelation of nonstationary sig-
nals, (2) TDICA based on combination of (1) and time-
delayed decorrelation approach, and (3) TDICA based on
minimization of KLD. The results of the signal separation
experiments reveal that the separation performances of (1)
and conventional FDICA are not so different and the sep-
aration performances of (2) and (3) are superior to that of
conventional FDICA. Therefore, the combination of FDICA
and (2) or (3) is inherently effective for improving the sepa-
ration performance. Specifically, the proposed method can
improve the SNR by about 3.0 dB over that of FDICA for
an average of 12 speaker-combinations.
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