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Abstract

Stereo echo cancellation requires a fast converging adaptive algorithm because the stereo input signals are highly cross

correlated and the convergence rate of the misalignment is slow even after preprocessing for unique identification of stereo

echo paths. To speed up the convergence, we propose enhancing the contribution of the decorrelated components in the

preprocessed input-signal vector to adaptive updates. The adaptive filter coefficients are updated on the basis of either a

single or multiple past enhanced input-signal vectors.

For a single-vector update, we show how this enhancement improves the convergence rate by analyzing the behavior of

the filter coefficient error in the mean. For a two-past-vector update, simulation showed that the proposed enhancement

leads to a faster decrease in misalignment than the corresponding conventional second-order affine projection algorithm

while computational complexities are almost the same.

r 2005 Elsevier B.V. All rights reserved.
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1. Introduction

Advanced teleconferencing features full duplex
communication and stereophonic sound transfer.
These features lead to a greater sense of presence
and more effective audio/video communication
between participants, but they also make acoustic
stereo echo cancellation indispensable.

The fundamental problem in acoustic stereo echo
cancellation is the unique identification of the
receiving room’s impulse responses. Since the signals
reproduced by the two loudspeakers in the receiving
e front matter r 2005 Elsevier B.V. All rights reserved
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room are usually linearly related to each other [1–5],
the adaptive filter for stereo echo cancellation faces
an almost singular normal equation. This problem is
of particular concern because lacking proper identi-
fication, echo cancellation becomes dependent on the
impulse responses of the transmission room. This
implies that one must track not only changes in the
receiving room but also changes in the transmission
room, which can be very rapid (e.g., when one person
stops talking and another starts).

Injection of uncorrelated components into re-
ceived signals has been proposed as a way of
overcoming this problem [1–9]. Uncorrelated com-
ponents should be injected at a level low enough so
that they are not noticeable in the speech.
.
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Fig. 1. Typical stereo echo cancellation system.
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However, this approach is only effective in
combination with a fast converging adaptive algo-
rithm because the adaptive algorithm must still
solve the ill-conditioned normal equation even after
the preprocessing.

The high computational expense of fast-conver-
ging time-domain adaptive algorithms is well
known. The two-channel fast recursive least-squares
(FRLS) algorithm is seven times as computationally
intensive as the conventional two-channel normal-
ized least-mean-square (NLMS) algorithm [10]. The
high-order affine projection algorithm (APA) is also
more computationally intensive than the conven-
tional NLMS: in this case, it is proportional to the
square of the projection order [11]. The fast
converging sub-band and frequency-domain adap-
tive algorithms inevitably incur processing delay,
although both are much less computationally
complex than the NLMS algorithm [12,13].

In this paper, we propose updating the adaptive
filter on the basis of an enhanced input-signal vector
for obtaining a novel fast-converging adaptive
algorithm. The basic idea of the algorithm is to
generate an increment vector, i.e., a vector used to
update the adaptive filter, with a smaller inter-
channel cross-correlation than the preprocessed
stereo signal itself [14,15].

The enhanced NLMS is obtained by replacing the
gradient vector in the NLMS algorithm with an
enhanced input-signal vector in which the uncorre-
lated component introduced for unique identifica-
tion is enhanced by a simple operation. We extend
the enhanced NLMS to the adaptive update on
multiple bases to improve the convergence rate.
This generalized version of the enhanced NLMS
(GENLMS) is obtained from APA in the same
manner. Simulation showed that the second-order
GENLMS decreased the misalignment between the
estimated and true echo paths more quickly while
being computationally as efficient as APA with the
same low order.

This paper is organized as follows. In Section 2,
the NLMS and APA are reviewed as two conven-
tional adaptive algorithms for stereo echo cancella-
tion. The enhanced NLMS is presented in Section 3.
The convergence properties of the enhanced NLMS
are discussed in Section 4. In Section 5, the
enhanced NLMS is extended to the adaptive update
on multiple bases. Section 6 presents simulation
results that demonstrate the effectiveness of enhan-
cing the injected uncorrelated component in the
increment vector of the filter coefficients.
2. Conventional adaptive algorithms and their

problems

Fig. 1 schematically shows a typical system for
stereo echo cancellation. In the transmission room,
stereo signals u1ðkÞ and u2ðkÞ are picked up by the
two microphones and transmitted. In the receiving
room, low-level uncorrelated components v1ðkÞ and
v2ðkÞ are injected into the received stereo signals to
avoid the non-uniqueness problem:

x1ðkÞ ¼ u1ðkÞ þ v1ðkÞ;

x2ðkÞ ¼ u2ðkÞ þ v2ðkÞ:
(1)

The signal yðkÞ at the microphone is expressed by

yðkÞ ¼ hTxðkÞ, (2)

where h ¼ ½hT1 h
T
2 �

T is the concatenation of the
vectors of the true impulse responses h1 and h2.
The input-signal vector xðkÞ is defined as

xðkÞ ¼
x1ðkÞ

x2ðkÞ

" #
¼

u1ðkÞ

u2ðkÞ

" #
þ

v1ðkÞ

v2ðkÞ

" #
, (3)

where

uiðkÞ ¼ ½uiðkÞ � � � uiðk � Lþ 1Þ�T; i ¼ 1; 2,

viðkÞ ¼ ½viðkÞ � � � viðk � Lþ 1Þ�T; i ¼ 1; 2.

Here, L is the length of the impulse-response
vectors.

The error eðkÞ is expressed by

eðkÞ ¼ yðkÞ � ĥTðkÞxðkÞ, (4)

where ĥðkÞ ¼ ½ĥT1 ðkÞ ĥ
T
2 ðkÞ�

T is the concatenation of
the vectors of adaptive filter coefficients ĥ1ðkÞ and
ĥ2ðkÞ. Note that, for simplicity, we only consider the
acoustic paths to one microphone in the receiving



ARTICLE IN PRESS
S. Emura et al. / Signal Processing 86 (2006) 1157–1167 1159
room; a similar analysis will apply to the other
microphone.

In the stereo echo cancellation system shown in
Fig. 1, the two sides of the original stereo signal
from the transmission room will obviously have
strong inter-channel cross-correlation because both
originate from the same source, the single talker.
The preprocessed stereo signal still has strong inter-
channel cross-correlation since effects of preproces-
sing must be inaudible and the level of uncorrelated
components is restricted.

In conventional two-channel NLMS, the vector
of adaptive filter coefficients is updated in the
following way:

ĥðk þ 1Þ ¼ ĥðkÞ þ mDĥðkÞ,

DĥðkÞ ¼
eðkÞ

xT1 ðkÞx1ðkÞ þ xT2 ðkÞx2ðkÞ þ d

x1ðkÞ

x2ðkÞ

" #
.

ð5Þ

The directional component of the increment vector
obviously contains no cross term involving both
x1ðkÞ and x2ðkÞ. Since the strong inter-channel
cross-correlation of the preprocessed stereo signal
remains in the increment vector as it is, the
convergence of misalignment is slow [2].

In conventional two-channel APA, the increment
vector consists of multiple input-signal vectors with
strong inter-channel cross-correlation. As with
NLMS, the increment vector’s directional component
contains no cross term involving x1ðkÞ and x2ðkÞ:

DĥðkÞ ¼ c0ðkÞ
x1ðkÞ

x2ðkÞ

" #

þ � � � þ cp�1ðkÞ
x1ðk � pþ 1Þ

x2ðk � pþ 1Þ

" #
. ð6Þ

The weights c0ðkÞ; . . . ; cp�1ðkÞ are obtained as

c0ðkÞ

..

.

cp�1ðkÞ

2
6664

3
7775 ¼ ½XTðkÞXðkÞ��1

�

yðkÞ � xT1 ðkÞĥðkÞ

..

.

yðk � pþ 1Þ � xT1 ðk � pþ 1ÞĥðkÞ

2
66664

3
77775,

where

XðkÞ ¼ ½xðkÞ; . . . ;xðk � pþ 1Þ�.
When the projection order p is low, the inter-sample
correlation is largely removed, but the inter-channel
cross-correlation partially remains in the increment
vector. This inter-channel cross-correlation slows the
convergence of misalignment.

3. New adaptive algorithm

We propose an enhanced form of the NLMS
(enhanced NLMS) that overcomes the problem of
slow convergence in this section.

The basic idea of this algorithm is to increase the
contribution of injected components to the incre-
ment vector. The injected components v1ðkÞ and
v2ðkÞ are designed to introduce uncorrelated com-
ponents into the linearly correlated original input
signals u1ðkÞ and u2ðkÞ [1]. This enhancement should
reduce the inter-channel cross-correlation in the
increment vector, and in turn improve the rate of
convergence.

The enhanced NLMS is derived by replacing the
increment vector for the NLMS algorithm:

mDĥðkÞ ¼ mxðkÞ
eðkÞ

xTðkÞxðkÞ þ d
, (7)

where

xðkÞ ¼
u1ðkÞ

u2ðkÞ

" #
þ

v1ðkÞ

v2ðkÞ

" #
, (8)

with a new increment vector:

mDĥðkÞ ¼ mzðkÞ
eðkÞ

xTðkÞzðkÞ þ d
, (9)

where

zðkÞ ¼
u1ðkÞ

u2ðkÞ

" #
þ s

v1ðkÞ

v2ðkÞ

" #
ðs41Þ (10)

and d is a small positive constant used to avoid
division by 0.

An enhancement factor sð41Þ is used to
control the contribution of the uncorrelated com-
ponents to the increment vector mDĥðkÞ, while
keeping their contribution constant in the
stereo loudspeaker signal xðkÞ. The larger s in the
new increment vector increases the contribution
of the uncorrelated components to adaptive updat-
ing. Note that the enhanced NLMS algorithm with
s ¼ 1 is identical to the conventional NLMS
algorithm.
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Fig. 2. Signal flow in the conventional NLMS algorithm and the proposed enhanced NLMS, where mDĥðkÞ==xðkÞmeans that the direction

of mDĥðkÞ is the same as that of xðkÞ. The increment vector mDĥðkÞ for the enhanced NLMS is generated from enhanced input-signal vector

zðkÞ, where the enhancement factor s controls the contribution of uncorrelated components vðkÞ introduced by preprocessing.
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This algorithm can be derived by obtaining the
weight c0ðkÞ for

DĥðkÞ ¼ zðkÞc0ðkÞ (11)

that satisfies

yðkÞ ¼ ½ĥðkÞ þ DĥðkÞ�TxðkÞ. (12)

Hence, the denominator of (9) is given as
xTðkÞ zðkÞ þ d, whereas that of (7) is xTðkÞxðkÞ þ d.

Fig. 2 shows the signal flow of the conventional
NLMS algorithm and the proposed enhanced
NLMS. In both cases, the input to the echo paths
is the same stereo signal. This means that the same
preprocessed stereo sound is reproduced by the
loudspeakers. In addition, the input to the time-
varying filter ĥðkÞ is the same stereo-input signal
vector, from which echo replica ŷðkÞ is generated.
On the other hand, the increment vector mDĥðkÞ of
the enhanced NLMS is generated not from input-
signal vector xðkÞ but from enhanced input-signal
vector zðkÞ, in which the contribution of the
uncorrelated component is enhanced by the en-
hancement factor s.

In the conventional NLMS algorithm, we can
also enhance the uncorrelated component in the
increment vector (7) by using large v1ðkÞ and v2ðkÞ.
However, amplifying these components of the
stereo loudspeaker signals degrades the reproduced
speech.
4. Properties of enhanced NLMS

In this section, we validate our idea of enhancing
the injected uncorrelated component in the incre-
ment vector. Firstly, we investigate the behavior of
the filter coefficient error in the mean and show that
the enhanced NLMS converges and that its
convergence rate is improved. Secondly, we inves-
tigate the behavior of the norm of the coefficient
error, thus deriving the range where the enhance-
ment is effective.

4.1. Assumptions

In the following analysis, we use low-level
independent random noise as the uncorrelated
component injected into each channel for correct
identification of the echo paths.

We make the following assumptions about the
injected signals v1ðkÞ and v2ðkÞ.

(A1) Neither signal is correlated with the original
stereo signal.

(A2) The signal power levels are given by

Efv21ðkÞg ¼ Efv22ðkÞg ¼ w, (13)

where Ef�g denotes mathematical expectation. We
also assume:

(A3) The input signals u1ðkÞ and u2ðkÞ are zero-
mean and wide-sense stationary. The covariance
matrix is independent of time k and can be
diagonalized by using the orthogonal matrix A

(ATA ¼ AAT
¼ I2LÞ as

Ru ¼ E
u1ðkÞ

u2ðkÞ

" #
½uT1 ðkÞ u

T
2 ðkÞ�

( )

¼ AT diagðq2L; . . . ; q1ÞA

q2LX � � �Xq1X0, ð14Þ

where I2L denotes the 2L� 2L identity matrix.
Throughout this section, we assume that 0omp1,

because step size m is usually set smaller than or
equal to 1.

4.2. Transition of mean coefficient error

Let us study the behavior of the mean coefficient
error of the adaptive filter in the transformed space.
Under the above assumptions, this behavior is
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determined by a similar transition formula to that
for the least-mean square (LMS) algorithm. We can
analyze its convergence in the same way as that of
the LMS [16,17].

The coefficient error in the transformed space is
defined as

sðkÞ ¼ ½s1ðkÞ � � � s2LðkÞ�
T ¼ A½h� ĥðkÞ�. ð15Þ

This vector of the coefficient error is updated by the
enhanced NLMS in this way:

sðk þ 1Þ ¼ sðkÞ � mA
zðkÞ

xTðkÞzðkÞ
eðkÞ, (16)

where the regularization is omitted for simplicity.
Substituting

eðkÞ ¼ xTðkÞh� xTðkÞĥðkÞ ¼ xTðkÞATsðkÞ (17)

into the update Eq. (16), we get the following
transition formula [16,17].

sðk þ 1Þ ¼ TSðkÞsðkÞ, (18)

where

TSðkÞ ¼ I2L � mA
zðkÞxTðkÞ

xTðkÞzðkÞ
AT. (19)

For large filter order Lb1, the squared norm
xTðkÞxðkÞ of the stationary input-signal vector xðkÞ
becomes almost independent of time, and can be
approximated by a constant [18]. Similarly,
xTðkÞzðkÞ can be approximated by a constant
Qþ sW , where

Q ¼ trace of diagðq2L; . . . ; q1Þ;

W ¼ trace of w I2L:

See Appendix for details.
For a sufficiently small step size, the variations of

the coefficient error vector are much slower than
those of the input signal, so zðkÞxTðkÞ can be
replaced with its ensemble average (‘‘direct aver-
aging’’, [16,18]). The mean transition matrix
EfTSðkÞg is the following diagonal matrix:

EfTSðkÞg ¼ I2L �
m

Qþ sW
AEfzðkÞxTðkÞgAT

¼ I2L �
m

Qþ sW

�

q2L þ sw 0

. .
.

0 q1 þ sw

2
6664

3
7775, ð20Þ
4.3. Convergence in the mean

We can analyze the behavior of the mean
coefficient error EfsðkÞg by analyzing the largest
eigenvalue of EfTSðkÞg, which determines the
convergence rate of EfsðkÞg.

The largest eigenvalue of EfTSðkÞg is given by

lmaxðEfTSðkÞgÞ ¼ 1� m
q1 þ sw

Qþ sW
, (21)

where q1 is the smallest eigenvalue of the covariance
matrix Ru of the stereo input signal before
preprocessing.

This largest eigenvalue lmaxðEfTSðkÞgÞ satisfies

0olmaxðEfTSðkÞgÞo1, (22)

since 0omp1 and 0o q1þsw
QþsW

o1.

Therefore, the coefficient error of the adaptive
filter converges in the mean.

For the correlated stereo input signal, the smallest
eigenvalue q1 of the covariance matrix Ru is almost
0 [3]. The following approximation holds for the
largest eigenvalue of EfTSðkÞg.

lmaxðEfTSðkÞgÞ ffi 1� m
sw

Qþ sW

¼ 1� m
w

Q=sþW
. ð23Þ

This largest eigenvalue is monotonically decreasing
for 1ps. Hence, a larger enhancement factor s can
reduce the largest eigenvalue lmaxðEfTSðkÞgÞ and
improve the convergence rate of the mean coeffi-
cient error.
4.4. Transition of coefficient error norm

Next, we investigate the range of s where the
enhancement is effective. For that purpose, we
analyze the behavior of the norm of the coefficient-
error vector. This norm must be decreasing for the
convergence of the coefficient error.

The coefficient error vector is defined as

mðk þ 1Þ ¼ h� ĥðk þ 1Þ (24)

and its evolution is given as

mðk þ 1Þ ¼ mðkÞ � m
zðkÞeðkÞ

xTðkÞzðkÞ
, (25)

where the regularization is omitted for simplicity.
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The evolution of its norm kmðkÞk2 is given as

kmðk þ 1Þk2 ¼ mðkÞ � m
zðkÞeðkÞ

xTðkÞzðkÞ

� �T

� mðkÞ � m
zðkÞeðkÞ

xTðkÞzðkÞ

� �

¼ mTðkÞmðkÞ � 2mmTðkÞ
zðkÞeðkÞ

Qþ sW

þ m2
Qþ s2W

ðQþ sW Þ2
e2ðkÞ, ð26Þ

where we have used the relations

zðkÞTxðkÞ ffi Qþ sW ,

zðkÞTzðkÞ ffi Qþ s2W .

For large filter order Lb1, the squared norm
xTðkÞxðkÞ of the stationary input-signal vector xðkÞ
can be approximated by a constant [18]. Similarly,
zðkÞTzðkÞ and zðkÞTxðkÞ can be approximated by a
constant.

By substituting eðkÞ ¼ xTðkÞmðkÞ into the above
equation, we obtain the difference between the
norms of the coefficient error vector as

kmðk þ 1Þk2 � kmðkÞk2

¼ mTðkÞ �
2m

Qþ sW
zðkÞxTðkÞ

�

þm2
Qþ s2W

ðQþ sW Þ2
xðkÞxTðkÞ

�
mðkÞ. ð27Þ

By taking the mathematical expectation, we can
further rewrite the above equation as

Efkmðk þ 1Þk2g � EfkmðkÞk2g

¼ E mTðkÞ �
2m

Qþ sW
E zðkÞxTðkÞ
� ���

þm2
Qþ s2W

ðQþ sW Þ2
EfxðkÞxTðkÞg

�
mðkÞ

�

¼ E mTðkÞAT 1

Qþ sW
ð�2mðQþ swIÞ

�

þm2
Qþ s2W

Qþ sW
ðQþ wIÞÞAmðkÞ

�
, ð28Þ

where we resort to the independence assumptions.
That is, we assume that coefficient error vector mðkÞ
is statistically independent of xðkÞ and zðkÞ [16,17].
We have also used the relations

EfzðkÞxðkÞTg ¼ AT
ðQþ swIÞA,
EfxðkÞxðkÞTg ¼ AT
ðQþ wIÞA. (29)

4.5. Contractivity on coefficient error norm

For the coefficient error vector to converge, the
norm of coefficient error vector kmðkÞk2 must
decrease on average for every iteration step.

The difference of the mean norm can be rewritten
as the weighted inner product of ðAmðkÞÞ by

Efkmðk þ 1Þk2g � EfkmðkÞk2g

¼ E ðAmðkÞÞT
P

Qþ sW
ðAmðkÞÞ

� �
, ð30Þ

where

P ¼ � 2mðQþ swIÞ

þ m2
Qþ s2W
Qþ sW

ðQþ wIÞ. ð31Þ

The matrix P is diagonal, and its diagonal elements
are given by

Pjj ¼ �2mðqj þ swÞ þ m2
Qþ s2W
Qþ sW

ðqj þ wÞ. (32)

For EfkmðkÞk2g to decrease, we must find the
condition where all the diagonal elements
Pjjð1pjp2LÞ must be negative. If there exists Pjj

greater than 0, then EfkmðkÞk2g is increasing and
the adaptive filtering becomes unstable. The balance
of the first and second terms determines whether
Pjj is negative. The first term of Pjj is always
negative in 1ps, since 0omp1, qjX0, and w40.
The second term is positive and monotonically
increasing for 1ps, since 0omp1, Q40, W40,
qjX0, w40, and

d

ds
Qþ s2W

Qþ sW

� �
¼

W 2s2 þWQð2s� 1Þ

ðQþ sW Þ2
40.

Fig. 3sketches Pjj=w as a function of the enhance-
ment factor s for qj ¼ w; 10w; 30w; 100w, where step
size m is set to 0.3 and W=Q is set to �25 dB. This
graph indicates that there exists a range of s where
Pjjð1pjp2LÞ is negative and the upper bound of
this range is small for larger qj. Note that q2L=w is
not less than Q=W ¼ 25 dB ’ 316:2, since

q1 þ � � � þ q2L

2Lw
¼

Q

W
and q2LX � � �Xq1X0.

By solving Pjjo0 ð1pjp2LÞ for s, we could
obtain the range of s as complicated functions of
the eigenvalue qj of the covariance matrix Ru

of stereo input signal. Instead, we obtain a narrower
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(and easy-to-handle) range of s by using the
inequality

Pjj ¼ � 2mðqj þ swÞ þ m2
Qþ s2W
Qþ sW

ðqj þ wÞ

omðqj þ wÞ m
Qþ s2W
Qþ sW

� 2

� �
o0. ð33Þ

From (33), we see that the mean norm of
EfkmðkÞk2g decreases when s satisfies

m
Qþ s2W
Qþ sW

� 2p0. (34)

This condition is further rewritten in terms of s as

1psp
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ mð2� mÞ=W=Q

p
m

, (35)

where W=Q is the ratio of the total power of
injected signals to the total power of received
signals.
5. Extension to the update on multiple bases

In this section, we extend the enhanced NLMS to
the adaptive update on multiple bases as in the APA
to improve the convergence rate. APA linearly
combines multiple delayed input signal vectors to
reduce the inter-sample correlation in the increment
vector. Such a decorrelated increment vector im-
proves the convergence rate for colored input
signals [19,20].
We can easily apply this approach to the
enhanced NLMS. We can derive a new adaptive
algorithm by replacing the increment vector of
APA, given by a linear combination of
xðkÞ; . . . ;xðk � pþ 1Þ, with a new increment vector
given by a linear combination of
zðkÞ; . . . ; zðk � pþ 1Þ. Hereafter, we call this algo-
rithm the generalized version of the enhanced
NLMS (GENLMS).

The pth order GENLMS is represented by

ĥðk þ 1Þ ¼ ĥðkÞ þ mDĥðkÞ, (36)

where

DĥðkÞ ¼ ZðkÞ½XTðkÞZðkÞ þ dI��1eðkÞ,

XðkÞ ¼ ½xðkÞ; . . . ;xðk � pþ 1Þ�,

ZðkÞ ¼ ½zðkÞ; . . . ; zðk � pþ 1Þ�.

Here, eðkÞ is the error signal vector of dimension p,
defined by

eðkÞ ¼ ½yðkÞ; . . . ; yðk � pþ 1Þ�T � XTðkÞĥðkÞ.

This algorithm is derived by obtaining weights
c0ðkÞ; . . . ; cp�1ðkÞ for

DĥðkÞ ¼ zðkÞc0ðkÞ þ � � � þ zðk � pþ 1Þcp�1ðkÞ

¼ ZðkÞ

c0ðkÞ

..

.

cp�1ðkÞ

2
6664

3
7775 ð37Þ

that satisfy the last p input–output relationships

yðkÞ ¼ xTðkÞ½ĥðkÞ þ DĥðkÞ�;

. . . ;

yðk � pþ 1Þ ¼ xTðk � pþ 1Þ½ĥðkÞ þ DĥðkÞ�:

These p input–output relationships are equivalent to
the following equation:

eðkÞ ¼ XTðkÞDĥðkÞ

¼ XTðkÞZðkÞ

c0ðkÞ

..

.

cp�1ðkÞ

2
6664

3
7775. ð38Þ

Hence, the weights c0ðkÞ; . . . ; cp�1ðkÞ are obtained as

c0ðkÞ

..

.

cp�1ðkÞ

2
664

3
775 ¼ ½XTðkÞZðkÞ��1eðkÞ (39)
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or, with a regularization constant d, as

c0ðkÞ

..

.

cp�1ðkÞ

2
664

3
775 ¼ ½XTðkÞZðkÞ þ dI��1eðkÞ. (40)

Substituting (40) into (37) yields the increment. As
shown in (37), this vector is a linear combination of
vectors zðkÞ; . . . ; zðk � pþ 1Þ, each of which has low
inter-channel cross-correlation.

The computational complexity of GENLMS is
almost the same as that of the conventional APA
because we can easily generate vector zðkÞ from the
signal samples uiðkÞ þ sviðkÞ; i ¼ 1; 2. There is no
need for vector calculation to obtain vector zðkÞ ¼

uðkÞ þ svðkÞ for each sample.
6. Simulation

In this section, we report on our confirmation of
the validity of the proposed idea through computer
simulation. We investigated the behavior of the
enhanced NLMS and second-order GENLMS.

We evaluated the performance of the proposed
adaptive algorithm in terms of the misalignment as
defined by

kh� ĥðkÞk2

khk2
, (41)

where h is the vector of truncated impulse responses
of the receiving room. It is possible to have good
echo cancellation even when the degree of misalign-
ment is large. In such a case, however, the
cancellation will become less effective if the impulse
response in the transmission room changes.
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Fig. 4. Behavior of average misalignment for the conventional NLMS

NLMS algorithm with preprocessing and various values of enhancemen

to the conventional NLMS algorithm). The inputs were (A) correlated

signals (0–20 s) and uncorrelated stereo white noise signal (20–40 s).
6.1. Performance of the enhanced NLMS

Firstly, we investigated the convergence rate of
the enhanced NLMS. We used samples of the 16
different colored noise sequences specified in the
P50 recommendations (which are representative of
the speech signal) [21] as the sound source in the
transmission room. The received signals were
correlated stereo pseudo speech signal followed by
uncorrelated stereo white noise signal. The stereo
pseudo speech signal was obtained by convolving
the above sound source signals and transmission
paths measured in a conference room with a
reverberation time of 200ms. The true echo paths
were also measured in a conference room and then
truncated to 2048 taps. The sampling frequency was
16 kHz.

We used independent random noises with equal
power as the injected signal for preprocessing as in
the analysis in Section 4. Their total power was set
to –25 dB of the total power of the received signals
ðW=Q ¼ �25 dBÞ. The adaptive filter had 1536 taps
on each channel. Step size m was set to 0.3.

Fig. 4 shows the behavior of average misalign-
ment for the enhanced NLMS with enhancement
factor s ¼ 1; 2; 4; 10 (note that the enhanced NLMS
with s ¼ 1 is identical to the conventional NLMS
algorithm). We can see that a larger enhancement
factor improved the convergence rate of misalign-
ment in the enhanced NLMS. The dotted line shows
the case of the NLMS algorithm without preproces-
sing, where the misalignment decreased rapidly in
the first second, but approached saturation from
about –3.5 dB. With preprocessing, the misalign-
ment continued to decrease slowly, reaching around
–4 dB at t ¼ 20 s. This was improved to –10.5 dB by
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increasing s to 10 in the enhanced NLMS. In each
case, the final misalignment was around �40 dB at
t ¼ 30 s.

Next, we experimentally checked the validity of
the convergence properties given in Section 4. For
that purpose, we investigated the convergence
behavior of the enhanced NLMS as a function of
the enhancement factor s when the step size m was
set to 0.1, 0.3, and 0.5. We used one received stereo
signal in the previous simulation.

Fig. 5 shows the misalignment after 20-s adapta-
tion for various values of s. Each curve has a point
where the misalignment was at its minimum. As s
increased from 1 to this point, the misalignment
improved gradually. When s exceeded this point,
the misalignment deteriorated suddenly. The trian-
gles indicate the theoretical upper bounds of the
range of s given by (35). We can see that the
adaptive estimation did not deteriorate within this
range. This result indicates that Pjj given by (32)
increases rapidly and exceeds 0 when s exceeds the
upper bound of (35).
6.2. Performance of the enhanced NLMS for speech

Next, we investigate the convergence rate of the
enhanced NLMS for speech and nonlinear prepro-
cessing. The received signals were obtained by
convolving a speech and transmission paths mea-
sured in a conference room with a reverberation
time of 200ms. The true echo paths were also
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Fig. 5. Misalignment after 20-s adaptation as a function of

enhancement factor s. The triangles show the upper bounds of

the range of s for corresponding step sizes.
measured in a conference room and then truncated
to 2048 taps. The sampling frequency was 16 kHz.

We used half-wave rectifiers

v1ðkÞ ¼ a
uðkÞ þ juðkÞj

2
,

v2ðkÞ ¼ a
uðkÞ � juðkÞj

2
ð42Þ

with a ¼ 0:3 as nonlinear functions for preproces-
sing. For this value, it was reported that there was
no audible degradation of the original signal [22]. A
white-noise signal with 40-dB SNR was added as
ambient noise to the signal arriving at the micro-
phone, which then produced output signal yðkÞ. The
adaptive filter had 1536 taps on each channel. Step
size m was set to 0.3.

Fig. 6 shows the behavior of misalignment for the
NLMS and enhanced NLMS with enhancement
factor s ¼ 10. We can see that the enhanced NLMS
improved the convergence rate of misalignment.
The dotted line shows the case of the NLMS
algorithm without nonlinear preprocessing, where
the misalignment decreased rapidly in the first
second, but approached saturation from about
–3.5 dB. With nonlinear preprocessing, the misa-
lignment continued to decrease slowly, reaching
around –6 dB at t ¼ 20 s. This was improved to
–9 dB by increasing s to 10 in the enhanced NLMS.
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Fig. 6. Behavior of misalignment for the conventional NLMS

algorithm with and without nonlinear preprocessing (without

NP: dotted line) and the enhanced NLMS algorithm with

enhancement factor s ¼ 10. The input was a correlated stereo

speech signal. The nonlinearity gain a was 0.3.
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6.3. Performance of the second-order GENLMS for

speech

Next, we investigate the convergence rate of
GENLMS for speech and nonlinear preprocessing.
We used the same simulation settings as in the
previous simulation.

Fig. 7 shows the behavior of misalignment for the
conventional second-order APA and the second-
order GENLMS ðp ¼ 2Þ with the enhancement
factor s ¼ 10. We can see that the second-order
GENLMS improved the convergence rate of mis-
alignment. The dotted line shows the case of the
conventional second-order APA without nonlinear
preprocessing, where the misalignment again satu-
rated at about –3.5 dB. With nonlinear preproces-
sing, the misalignment decreased slowly to –8.5 dB
at t ¼ 20 s. This was improved to –15.2 dB by
increasing s to 10 for the second-order GENLMS.

Note that the second-order GENLMS can be
exactly implemented with the same computational
complexity as that of NLMS by using the technique
of the fast APA [23,24].
7. Conclusion

We have proposed updating the adaptive filter for
stereo echo cancellation on the basis of an enhanced
input-signal vector for obtaining a novel fast-
converging adaptive algorithm. The increment
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Fig. 7. Behavior of misalignment for the conventional second-

order affine projection algorithm with and without nonlinear

preprocessing (without NP: dotted line) and the second-order

generalized version of the enhanced NLMS (GENLMS) with

enhancement factor s ¼ 10. The input was a correlated stereo

speech signal. The nonlinearity gain a was 0.3.
vector used to update the adaptive filter enhances
the uncorrelated component injected for unique
identification of the echo paths. We showed how
this enhancement is effective by analyzing the
statistical behavior of the enhanced NLMS. Next,
we extended the enhanced NLMS to the generalized
version of the enhanced NLMS (GENLMS), where
the adaptive filter is updated on multiple bases as in
the APA to improve the convergence rate.

Simulation demonstrated that the two-channel
second-order GENLMS decreased the misalign-
ment of the adaptive filter more quickly than the
conventional two-channel NLMS algorithm or the
second-order APA, while having the same compu-
tational complexity as the two-channel second-
order APA.
Appendix

In this appendix, we obtain the statistical proper-
ties of the signal vectors that appear in Section 4.
Based on Assumptions (A1), (A2) and (A3), we
obtain

E
u1ðkÞ

u2ðkÞ

" #
½vT1 ðkÞ v

T
2 ðkÞ�

( )
¼

0L 0L

0L 0L

" #
(43)

and

E
v1ðkÞ

v2ðkÞ

" #
½vT1 ðkÞ v

T
2 ðkÞ�

( )
¼

wIL 0L

0L wIL

" #
, (44)

where IL is the L� L identity matrix, and 0L is the
L� L zero matrix.

In addition, we obtain

E ½vT1 ðkÞ v
T
2 ðkÞ�

v1ðkÞ

v2ðkÞ

" #( )
¼W (45)

and

E ½uT1 ðkÞ u
T
2 ðkÞ�

v1ðkÞ

v2ðkÞ

" #( )
¼ 0, (46)

where

W ¼ trace of wI2L.

From the assumptions about the stereo input signal
that lead to (14), we obtain

E ½uT1 ðkÞ u
T
2 ðkÞ�

u1ðkÞ

u2ðkÞ

" #( )
¼ Q, (47)
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where

Q ¼ trace of diagðq2L; . . . ; q1Þ.

Consequently, for

xðkÞ ¼
u1ðkÞ

u2ðkÞ

" #
þ

v1ðkÞ

v2ðkÞ

" #
and zðkÞ

¼
u1ðkÞ

u2ðkÞ

" #
þ s

v1ðkÞ

v2ðkÞ

" #
,

we obtain

AEfxðkÞxTðkÞgAT

¼ diagðq2L; . . . ; q1Þ þ wI2L, ð48Þ

AEfzðkÞzTðkÞgAT

¼ diagðq2L; . . . ; q1Þ þ s2wI2L, ð49Þ

AEfzðkÞxTðkÞgAT

¼ diagðq2L; . . . ; q1Þ þ swI2L. ð50Þ

In addition,

EfxTðkÞzðkÞg ¼ Qþ sW . (51)
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