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I. INTRODUCTION

We are surrounded by sounds and noises in presence of
room reverberation [15]. The observed mixed signals are
usually less than source signals. The mixing condition is prone
to be varied by the moving sources or in case of source
replacement. It becomes challenging to estimate the desired
audio and speech signals and develop a comfortable acoustic
communication channel between humans and machines. Audio
source separation in realistic conditions has been a fascinating
avenue for research which is crucial for broad extensions and
applications ranging from speech enhancement, speech recog-
nition, music retrieval, sound classification, human-machine
communication and many others. How to extract and separate
a target audio or speech signal from noisy and nonstationary
observations is now impacting the communities of signal
processing and machine learning.

The traditional blind source separation (BSS) approaches
based on independent component analysis (ICA) were de-
signed to resolve the instantaneous mixtures by optimizing
a contrast function based on the measure of independence
or non-Gaussianity. In previous BSS methods, the frequency
characteristics and location of individual sources and how
these sources were mixed were not sophisticatedly investi-
gated. Solving the instantaneous mixtures did not truly reflect
the real reverberant environment which structurally mixed the
sources as the convolutive mixtures [11]. The underdetermined
problem in presence of more sources than sensors may not
have been carefully treated [14]. The contrast functions may
not flexibly and honestly measure the independence for an
optimization with convergence [3]. The static mixing system
could not catch the underlying dynamics in source signals and
sensor networks. The uncertainty of system parameters may
not be precisely characterized so that the robustness against
adverse conditions was not guaranteed [5].

Generally, signal processing and machine learning provide
fundamental knowledge and algorithm to resolve different
issues in audio source separation. The goal of this article is
to overview a series of recent advances in adaptive processing
and learning algorithms for BSS in presence of speech and
music signals. We survey the recent solutions to overde-
termined/underdetermined convolutive separation [12], sparse
source separation [1], nonnegative matrix factorization (NMF)
[4][13], information-theoretic learning [2][5], online learning
[5] and Bayesian inference.

In general, these algorithms are classified into front-end
processing and back-end learning as shown in Figure 1 [6].
In front-end processing, we highlight on the adaptive signal
processing to analyse the information on each source, such as
its frequency characteristics and location, or identifying how
the sources are mixed. We review the works on frequency-
domain audio source separation which could align the per-
mutation ambiguities [12], separate the convolutive mixtures,
identify the number of sources [1], resolve the overdeter-
mined/underdetermined problem [14]. The back-end learning
is devoted to recover the source signals by using only the
information about their mixtures observed in each microphone
without frequency and location information on each source.
We build a statistical model and infer the model by using the
mixtures. We introduce the estimation of demixing parameters
through construction and optimization of information-theoretic
contrast function [2][3]. The solutions to music source separa-
tion based on NMF [13] and sparse learning [4] are addressed.
Next, we focus on the uncertainty modeling for the regularized
signal separation in accordance with Bayesian perspective. The
nonstationary and temporally-correlated source separation [5]
is presented.

II. FRONT-END PROCESSING

Considering the issue of unknown number of sources, a
Gaussian mixture model with Dirichlet prior for mixture
weight parameter was proposed to identify the direction-of-
arrival (DOA) of source speech signal from individual time-
frequency units. This model was applied to estimate the
number of sources and deal with the sparse source separation
[1].

For the determined or the overdetermined problem, the num-
ber of microphones is enough for the number of sources. The
complex-valued ICA was proposed to separate the frequency
bin-wise mixtures. For each frequency bin, the ICA demixing
matrix is optimized so that the distribution of the demixed
elements is far from a Gaussian [11].

There is scaling ambiguity in an ICA solution. For an audio
source separation task, the scaling ambiguity is resolved by
representing the observed signals at microphones with the
scaled separated signals [11].

In an underdetermined system, the number of microphones
N is insufficient for the number of sources M , we typically
employ the method based on time-frequency masking, where
we need to estimate which source has the largest amplitude for
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Fig. 1. Some issues in adaptive audio source separation.

each time frequency slot (f, t). For this purpose, we apply a
clustering method to M -dimensional observation vectors xft
and to calculate the posterior probability p(Cm|xft) that a
vector xft belongs to a cluster or a source Cm. Then, the
time frequency masks Mftm are made and used to find the
separated signals ŝ(m)

ft = Mftmxft. The posterior probabil-
ity p(Cm|xft) is calculated by using a likelihood function
p(xft|Θ) based on a Gaussian mixture model (GMM) with
parameters Θ [12].

The method based on ICA or GMM performs a source
separation task in a frequency bin-wise manner. Therefore,
we need to align the permutation ambiguity of the ICA
or GMM results in each frequency bin so that a separated
signal in the time domain contains frequency components
from the same source signal. This problem is well known
as the permutation problem of frequency-domain BSS [9].
The dominance measures [10][12] performs very well for
this problem. When using ICA, we employ the power ratio
of the scaled separated signals as a dominance measure
r
(m)
f (t) [10]. On the other hand, when using a GMM for

time-frequency masking, we employ the posterior probability
r
(m)
f (t) = p(Cm|xft) as a dominance measure [12]. After

calculating the dominance measure, we basically interchange
the indices m of the separated signals so that the correlation
coefficient ρ(r(m)

f , r
(m)
f ′ ) between the dominance measures at

different frequency bins f and f ′ is maximized for the same
source.

III. BACK-END LEARNING

In this section, we focus on the machine learning solutions
to audio source separation. We consider blind speech or music
separation as a learning problem without special treatment on
convolutive mixtures or extraction of frequency features and
location information on each source signal. Let the observation
vector xt = [xt1, . . . , xtN ]T from N microphones at time
frame t be mixed by xt = Ast where A is an unknown N×M
mixing matrix and st = [st1, . . . , stM ]T denotes a vector of M
mutually-independent source signals. For the case of N =M ,
BSS problem is resolved by ICA method which optimizes
a contrast function D(X,W) measuring the independence

or non-Gaussianity of the demixed signals ŝt based on a
demixed matrix or separation matrix W, i.e. ŝt = Wxt. The
demixing matrix can be estimated in accordance with the
gradient descent algorithm or the natural gradient algorithm
from a set of audio signals X = {x1, . . . , xT }. The metrics
of likelihood function, negentropy and kurtosis are popular
to serve as ICA contrast functions. More meaningfully, the
information-theoretical contrast function is adopted to measure
the independence between the demixed signals.

The statistical hypothesis test was recently proposed to
carry out an information measure of confidence towards in-
dependence by investigating the null hypothesis H0 where
the demixed signals Ŝ = {ŝ1, . . . , ŝT } are independent against
the alternative hypothesis H1 where the demixed signals are
dependent [2]. The contrast function was formed as a log like-
lihood ratio given by D(X,W) = log p(Ŝ|H0)− log p(Ŝ|H1).
More generally, the measure of independence is calculated as
a divergence between the joint distribution of the demixed
signals and the product of marginal distributions of individual
demixed signals. This divergence measure equals to zero in
case that the condition of independence is met. A general con-
vex divergence measure was derived by substituting a general
convex function f(t) = 4

1−α2

[
1−α
2 + 1+α

2 t− t(1+α)/2
]

into
Jensen’s inequality to construct a contrast function for ICA
optimization. This convex divergence D(X,W, α) is developed
with an adjustable convexity parameter. In cases of α = 1
and α = −1, the general convex divergence is realized
to the convex-Shannon divergence and the convex-logarithm
divergence where the convex functions based on Shannon’s
entropy and negative logarithm are adopted, respectively.

The dictionary learning based on the nonnegative matrix
factorization (NMF) is recently hot issue in audio source
separation [7]. NMF attempts to decompose the nonnegative
mixed samples X ∈ RN×T into a product of nonnegative
mixing matrix A ∈ RN×M and nonnegative source signals
S ∈ RM×T by minimizing a divergence measure D(X,A,S)
between X and AS. NMF is a parts-based representation which
only allows additive combination and can be directly applied to
decompose the nonnegative mixed audio signals. The absolute
values of short-time Fourier transform (STFT) are calculated
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to form X. The standard NMF is fulfilled according to a
regularized least square criterion with sparsity constraint.

More recently, the convex divergence [3] and Itakura-Saito
(IS) divergence [13] were treated as the objective function
to derive solution to NMF. For example, IS divergence is
written by DIS(X,A,S) =

∑
n,t(

Xnt

[AS]nt
− log Xnt

[AS]nt
−1) which

depends only on the ratio Xnt

[AS]nt
. In [8][13], minimizing IS

divergence was shown to be equivalent to maximizing the log-
likelihood log p(X̃|A,S) based on the multivariate complex-
valued Gaussian distributions where X̃ denotes a matrix of
STFT complex-valued coefficients.

In [4], Bayesian NMF was proposed for monaural music
source separation which decomposed a single-channel mixed
signal X into a rhythmic signal Xr and a harmonic signal
Xh. Let the nonnegative monaural matrix X ∈ RF×T in
time-frequency domain be chunked into L segments {X(l)}.
Each segment is represented by X(l) = X(l)

r + X(l)
h =

ArS(l)
r +A(l)

h S(l)
h where {S(l)

r ,S
(l)
h } are two groups of segment-

dependent encoding coefficients, A(l)
h denotes the bases for

harmonic source which are individual for different segments
l, and Ar denotes the bases for rhythmic source which are
shared across segments. Assuming the basis components are
Gamma distributed and the encoding coefficients are Laplacian
distributed, Bayesian group sparse learning for NMF was
performed to resolve the underdetermined source separation
through a Gibbs sampling procedure.

Further, we face the challenges of changing sources or mov-
ing speakers, namely the source signals may abruptly appear or
disappear, the speakers may be replaced by new ones or even
moving from one location to the other. The mixing conditions
and source signals are accordingly nonstationary and should be
traced to assure robustness in nonstationary source separation
[5]. A meaningful approach to deal with the robustness issue
in audio source separation is constructed from Bayesian per-
spective. Some prior information is introduced for uncertainty
modeling and knowledge integration. Let X(l) = {x(l)

t } denote
a set of mixed signals at segment l. The signals are mixed by a
linear combination of M unknown source signals S(l) = {s(l)t }
using a mixing matrix A(l), i.e. considering a noisy ICA
model x(l)

t = A(l)s(l)t + ε
(l)
t where E(l) = {ε(l)t } denotes the

noise signals. We assume that A(l) and S(l) are unchanged
within a segment l but varied across segments. To tackle the
nonstationary source separation, we attempt to incrementally
characterize the variations of A(l) and S(l) from the observed
segments X (l) = {X(1),X(2), . . . ,X(l)}. Online learning
is conducted to compensate for nonstationary conditions of
mixing coefficients and source signals segment by segment.
We also present the solution to nonstationary and temporally
correlated source separation where the mixing condition is
changed continuously and the temporal correlation in time-
series signals, e.g. mixing coefficients and source signals, is
taken into account. Online learning and Gaussian process are
merged into a separation system which compensates for the
nonstationary and temporally correlated mixing environments
and source signals, respectively.

IV. CONCLUSIONS

We have presented a series of adaptive methods which were
developed for different issues in BSS. In front-end processing,
we addressed high-performance solutions to overdetermined
and underdetermined problems which are based on the pro-
cessing of complex-valued time-frequency signals and the
noise-masking method using Gaussian mixture model. The
permutation problem was solved according to the correlation
coefficient between dominance measures at different frequency
bins. In back-end learning, we addressed the importance of
information-theoretical learning for ICA optimization. The
recent methods of sparse learning and dictionary learning
based on NMF were presented for speech/music source sep-
aration. The online learning and Bayesian learning designed
for nonstationary source separation were also presented for
improving the robustness for audio source separation.
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