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Abstract
This paper deals with voice activity detection (VAD) tasks under high-level noise environments where signal-
to-noise ratios (SNRs) are lower than −5 dB. With the increasing needs for hands-free applications, it is un-
avoidable to face critically low SNR situations where the noise can be internal self-created ego noise or external
noise occurring in the environment, e.g., rescue robots in a disaster or navigation in a high-speed moving car. To
achieve accurate VAD results under such situations, this paper proposes a gated convolutional neural network-
based approach that is able to capture long- and short-term dependencies in time series as cues for detection.
Experimental evaluations using high-level ego noise of a hose-shaped rescue robot revealed that the proposed
method was able to averagely achieve about 86% VAD accuracy in environments with SNR in the range of
−30 dB to −5 dB.
Keywords: Voice activity detection (VAD), low SNR, gated convolutional neural networks, rescue robot,
ego noise

1 INTRODUCTION
Voice activity detection (VAD) is referred to as the technique of identifying speech and non-speech regions in
a recorded audio signal, which is an active research area in the field of speech processing since it plays an
essential role in numerous speech applications [1, 2, 3]. In high-quality recording conditions where signal-to-
noise ratios (SNR) are high, methods based on the energy perform well because the energy difference between
speech and non-speech segments is noticeable. However, the performances of these methods decrease when
SNR tends to be critically low. On the other hand, with the rapidly increasing needs for hands-free applications
and robots, high VAD accuracies are required under various situations without regard to SNRs. This means that
developing VAD systems handling critically low SNRs becomes indispensable since these situations frequently
occur around us, such as navigation in a high-speed moving car or robot audition [4, 5].
To deal with such arduous tasks and motivated by the considerable success in many classification tasks achieved
by deep learning-based methods, some attempts have recently been made to adopt deep neural networks (DNNs)
to VAD tasks [6, 7, 8, 9, 10, 11]. In [7, 8], multiple layer perceptron (MLP) is employed to train a nonlinear
speech/non-speech classifier. To capture the dependence in time series, these methods take segmental features
that concatenate the feature vectors extracted from the current frame, preceding frames and succeeding frames
as inputs of neural networks. However, capturing the temporal dependency in such naïve way will lead to a
critical increase of the feature dimension, which significantly increases the difficulty of training a classifier with
good generalization. Comparing with MLP, recurrent neural networks (RNN) and convolutional neural networks
(CNN) are more efficient architectures to model time series data. Especially, long short-term memory (LSTM)
networks [12, 13] (also bidirectional LSTM and gated recurrent units) and gated CNN [14] have shown their
strong capability to capture long-term dependencies of time series in many recent studies, including VAD tasks
[10, 11]. Although RNN, including LSTM, is proposed initially to model time series, enormous parameters
involved in models lead to some well-known problems. Namely, it is cost-consuming to train an acceptable
model, and RNN is prone to overfitting. Furthermore, it has been reported in [10] that LSTM suffers from
state saturation problems for long-utterance in VAD tasks. In contrast, CNN has a relatively small number of
parameters thanks to its parameter sharing scheme, and with the gated mechanism and the dilation process,
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Figure 1. An example of spectrograms of speech, ego noise (left) and mixture signals (right upper) where
SNR=-20 dB. Ground truth is shown in the right bottom.

CNN has achieved comparable performance with LSTM in modeling time series [10, 14], which attracts a lot
of attention recently.
Similar to other classification tasks, deep learning-based methods have accomplished significant improvement
in VAD tasks comparing to conventional methods, and many successful systems have been developed and re-
ported. However, to our best knowledge, the effectiveness of these systems was only confirmed under noisy
environments where SNRs were about [-5, 30] dB. There has been no investigation on performing VAD under
high-level noisy situations where SNRs are lower than −5 dB. In this paper, we mainly provide two contribu-
tions. First, we propose a VAD system that uses gated CNN [14] to construct the VAD classifier together with
a temporal smoothing as post-process. We focus on small network architectures to prevent high computational
cost, which could be a severe problem when converting an existing method into a real-time system. This is the
main difference between the proposed system and the one proposed in [10], which uses 36 layers and residual
structures. Second, we investigate VAD methods in high-level noisy environments where SNRs are about [-30,
-5] dB and show the limitation of the MLP-based method and the proposed method in such severe situations.
Specifically, we evaluate the proposed method with speeches recorded by a hose-shaped rescue robot, which are
critically interrupted by the self-created ego noise of the robot. Fig. 1 shows an example of spectrograms of
the ego noise and the mixture signal whose SNR is −20 dB.

2 MLP-based VAD
Let x(t) denotes a mixture signal (i.e, observation) consisting of a target speech s(t) and a noise signal n(t),
and x(ω, f ), s(ω, f ) and n(ω, f ) denote short-time Fourier transform (STFT) representations of the mixture,
speech, and noise signal, respectively. Here t = {1,2, . . . ,T} denotes the discrete time index in time domain, and
ω = {1,2, . . . ,Ω} and f = {1,2, . . . ,F} denote the frequency and frame indices in STFT domain, respectively.
A VAD problem can be formulated as a binomial classification problem that classifies a segment of signal
{x(t), . . . ,x(t +T )} into speech and non-speech groups on the basis of a set of input features x̃(ω, f ) extracted
from the signal segment:

v( f ) =

{
1 (speech),
0 (non-speech).

(1)

Here v( f ) denotes the ground truth at f -th frame. There are various acoustic features available for VAD,
including magnitude/power spectrum, mel-frequency cepstral coefficients (MFCC). Considering that a neural
network is able to serve as a further feature extractor to extract more task-effective features, in this paper, we
use magnitude spectra of the observation x̃(ω, f ) = |x(ω, f )| as acoustic features.
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Figure 2. Flowchart of proposed method.

In an MLP-based VAD system, in order to capture the long-term dependencies in acoustic time series, in-
puts of a neural network in both of training and test stages are segmental features defined as X(f) = [x̃(f−
M+ 1)T, x̃(f−M+ 2)T, . . . , x̃(f− 1)T]T ∈ RΩ×M, which are concatenated feature vectors that combine the fea-
ture extracted from the current frame x̃( f ) = [x̃(1, f ), x̃(2, f ), . . . , x̃(Ω, f )]T and those extracted from the previous
(M − 1) frames. Since temporal dependency structures involve important information for analyzing time series
such speech signals, it is expected that a more accurate classification system could be obtained with segmental
features combining more feature vectors. However, it becomes challenging to train a well-generalized model
when the dimension of input data increases, which results in a dramatic increase in the parameter number.

3 Proposed VAD system using gated CNN
RNN, in particular, LSTM, is a natural choice for modeling time series data since the recurrent connection
architectures allow the networks to make a prediction with the entire input time series. However, the deeper
the network architecture becomes, the more challenging its training becomes. Furthermore, it is difficult to
employ parallel implementations for RNNs; thus, the training and prediction processing become computationally
demanding. Motivated by the recent success achieved by CNN in language modeling and speech synthesis, and
the merits of CNN that it is practically much easier to train and well suited to parallel implementation, in this
paper, we propose a VAD classifier using CNN-based neural networks. The VAD decision is finally made by
thresholding a smoothed predicted speech probability series, which is the output of the classifier. The flowchart
of the proposed method is shown in Fig. 2.

3.1 CNN-based VAD Classifier
Considering the fact that spectrograms of audio signals have region dependency (i.e. they have different fre-
quency structures in voiced and unvoiced segments), in particular, we employ gated CNN to model a VAD
classifier P = F (X), where F (·) denotes a nonlinear function modeled with CNN, X = {x̃(ω, f )}ω, f denotes
magnitude spectrograms of mixture signals, and P = {p(d, f )}d, f ∈ R2×F denotes probability series of speech
and non-speech, respectively. Note that P satisfies the constraint that ∑d p(d, f ) = 1. By using Hl−1 to denote
the output of the (l −1)-th layer, the output of the l-th layer Hl of a gated CNN is given as

Hl = (Hl−1 ∗Wf
l +bf

l)⊗σ(Hl−1 ∗Wg
l +bg

l ), (2)

where Wf
l , Wg

l , bf
l and bg

g are weight and bias parameters of the l-th layer, ⊗ denotes the element-wise mul-
tiplication and σ is the sigmoid function. Here, a gated linear unit (GLU) represented as the second term of
(2) is used as a nonlinear activation function, which is the main difference between a gated CNN and a regular
CNN layer. Similar to LSTM, GLU is a data-driven gate, which plays the role of controlling the information
passed on in the hierarchy. Owing to this particular mechanism, it allows us to capture long-range context
dependencies efficiently by deepening the layers without suffering from the vanishing gradient problem as well
as apply different filters to different regions in a data-driven manner. Moreover, to capture the dependency of
frequencies, we use 1-dimensional convolution, where the frequency dimension is regarded as the channel di-
mension, and an input spectrogram is convolved with a (1,kτ) filter. Here kτ is the filter width in the frame
dimension. Dilated convolution [15] is used to efficiently obtain wider receptive field with fewer parameters by
convolving a larger filter derived from the original filter with dilating zeros. Details of the network architecture
we used in experiments are shown in Fig. 3.
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VAD Classifier

Figure 3. Network architecture of proposed VAD classifierThe inputs and outputs are 1-dimensional data. “w”,
“c”, “k” and “d” denote the width, channel number, kernel size and dilation number, respectively. “Conv”,
“BN”, and “GLU” denote 1-dimensional convolution, batch normalization and gated linear unit, respectively.

front

left right

hose-shaped robot

Figure 4. Hose-shaped rescue robot (left) and configuration of recording (right).

3.2 Post-processing: smoothing
After VAD classifier, we perform a temporal smoothing to the output probability series of speech to lessen the
sudden changes of the decision since speech generally remains for a given period after a speech frame has been
detected. The smoothing is applied with a rectangular window having 2L+1 window length

p̂(1, f ) =
1

2L+1

f+L

∑
l= f−L

p(1, l). (3)

Then the decision v̂( f ) is made by thresholding the smoothed probability series p̂(1, f ) with a manually set
threshold θ . Frames with probability larger than the threshold are recognized as voiced frames otherwise un-
voiced frames.

4 EXPERIMENTS
To evaluate the proposed system and investigate the limitation of the existing MLP-based method under high-
level noisy environments, we conducted experiments where both of the systems were used to detect voice
regions in noisy signals recorded by a hose-shaped rescue robot.

4.1 Hose-shaped rescue robot
The hose-shaped rescue robot is one of the robots developed by ImPACT project [4] for search and rescue
operations during large-scale disasters such as earthquakes. This robot is long and slim like a snake, as shown
in the left of Fig. 4, which allows it to investigate narrow spaces where are impossible for a human to enter.
With the microphones attached around the body of the robot, voices of disaster victims can be captured so that
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Table 1. Details of training and test datasets.
Training data (SIM) Test data (SIM) Test data (REC)

Directions of arrival front, right left left

Speakers 2 male and 2 female 1 male and 1 female 1 male and 2 female
(fkn, fks, mho, mht) (ftk, mmy) (fym, mae, msh)

Positions of robot 4 types 2 types 1 type
Vibration levels 2 types 2 types 3 types including no vibration
Number of frames about 13.06 millions about 1.55 millions 7512

rescuers can localize the positions of victims and master the conditions of victims. However, it is challenging to
capture clear voices of victims since the self-created ego noise is always existing, involving the driving sound
of the vibration motors, the fricative sound generated between the cilia and floor and the noise generated by
microphone vibration. Moreover, the energy of ego noise is notably higher than those of voices because of
the close distance between the microphones and noise sources and a relatively low-energy sound of a person
seeking help. This means SNRs of speech signals recorded by the robot are generally low.

4.2 Datasets and experimental conditions
We created two datasets for experiments, namely, simulated dataset (SIM) and recorded dataset (REC), using
the hose-shaped rescue robot and ATR503 speech database [16]. The data in the previous one were generated
by first convolving dry speech sources and measured room impulse responses (RIR), then adding them into the
recorded ego noise signals of the robot with SNR={−30,−25,−20,−15,−10,−5} dB. The room configuration
for measuring RIRs is shown in the right figure in Fig. 4, and the ego noise signals were recorded with 2
types of vibration levels and 4 different positions of the robot. The ground truth was obtained by performing
frequency domain power-based VAD to convolved speech signals following a hangover process. We divided SIM
dataset into two sub-datasets as training dataset and test dataset so that the speakers, direction of arrival were
different between the sub-datasets. REC dataset was generated by recording speech signals from loudspeakers
using the microphones attached to the robot with 2 different vibration levels as well as without vibration. The
sound levels of speech signals were set at {30,40,50,70} dB so that the SNRs of the recorded signals were
about [-30, -20] dB. The ground truth of this dataset was manually labeled. Those data with uncertain labels
were excluded in the experiment. Note that the REC dataset was only used for the test. More details of training
and test datasets are shown in Table 1.
All signals were recorded or generated using the single microphone at the front of the robot with a sampling
rate of 16 kHz. The magnitude spectrograms were calculated with window length and window shift set at 32
ms and 16 ms, respectively. The temporal length for smoothing was set at 11, i.e., L = 5. The threshold was
set at θ = 0.5. We compared two varieties of the proposed systems, namely, gated CNN-based VAD classifier
without/with the post-processing, with two MLP-based VAD classifiers with the post-processing. The inputs
of MLP-based classifiers were segmental features combining 7 frames. Four criteria were used for evaluation.
Namely, 1) Root mean square error (RMSE) of the probability series of speech between the ground truth and
estimated value; 2) Percentage of the accurately detected frames (accuracy; ACC); 3) False acceptance rate
(FAR); and 4) False rejection rate (FRR).

4.3 Results
Table 2 shows the results achieved with MLP-based classifiers with the different number of layers, the proposed
gated CNN-based classifier without post-processing, and the proposed system. Note that RMSE results were
calculated by taking an average of all the data without regard to SNRs and the other criteria were calculated
based on the whole datasets. Although MLP-based systems obtained adequate results in terms of accuracy and
FRR, FAR and some examples shown in the left of Fig. 6 show that MLP-based systems tended to predict all
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Table 2. VAD results of SIM and REC test datasets.
SIM REC

RMSE ACC FAR FRR RMSE ACC FAR FRR
MLP(3 layers) 0.432 0.700 0.866 0.068 0.60 0.700 0.868 0.027
MLP(5 layers, dropout) 0.439 0.692 0.766 0.119 0.466 0.711 0.785 0.050
Gated CNN 0.352 0.848 0.326 0.077 0.451 0.767 0.534 0.084
Gated CNN+smoothing 0.318 0.863 0.325 0.056 0.424 0.770 0.542 0.077

Figure 5. Results in terms of RMSE, ACC, FAR, and FRR under environments with different SNRs.

the frames as speech regions. In contrast, the proposed gated CNN-based systems achieved better performances
in terms of all the criteria with SIM dataset. The detection accuracy was about 85% even in high-level noise
environments. The results also show that smoothing is effective in improving the detection accuracy.
The performances achieved in various SNRs are shown in Fig. 5. The performances tended to decrease when
SNRs decreased, which were reasonable. However, from Fig. 5 and the results obtained with REC dataset
shown in Table 2, the results show that the VAD performances under situations with SNRs lower than −20 dB
decreased rapidly, and the accuracy was lower than 80%, which was unsatisfactory. There is still a massive
space in improving the detection accuracy under environments where SNRs are under −20 dB.

5 CONCLUSIONS
In this paper, we proposed a VAD system that adopts a neural network constructed with gated CNN as speech/non-
speech classifier and applies smoothing as post-processing. We focused on high-level noisy environments where
SNRs are lower than −5 dB and investigated the VAD performances of the proposed system and an existing
MLP-based VAD system under such severe situations. The experimental results showed that 1) the proposed
gated CNN-based VAD system outperformed MLP-based VAD systems; 2) utilizing temporal smoothing as
post-processing was effective in improving the VAD accuracy; 3) the proposed method achieved satisfactory
results under the situations where SNRs were about [-20, -5] dB whereas the performances under the situations
with SNRs lower than −20 dB were unsatisfactory. To break through the limitation of VAD, more efforts need
to be paid in developing systems for environments with extremely low SNRs.
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Figure 6. Examples of detected speech regions. From top to bottom are data in SIM dataset whose SNRs were
−5 dB, −15 dB, and −30 dB, respectively, and an example from REC dataset.
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