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Abstract. In this paper, we present an ego noise reduction method for
a hose-shaped rescue robot, developed for search and rescue operations
in large-scale disasters. It is used to search for victims in disaster sites
by capturing their voices with its microphone array. However, ego noises
are mixed with voices, and it is difficult to differentiate them from a call
for help from a disaster victim. To solve this problem, we here propose
a two-step noise reduction method involving the following: (1) the esti-
mation of both speech and ego noise signals from observed multichannel
signals by multichannel nonnegative matrix factorization (NMF) with
the rank-1 spatial constraint, and (2) the application of multichannel
noise cancellation to the estimated speech signal using reference signals.
Our evaluations show that this approach is effective for suppressing ego
noise.

Keywords: Rescue robot + Tough environment + Noise reduction - Non-
negative matrix factorization - Independent vector analysis - Multichan-
nel noise cancellation

1 Introduction

It is important to develop robots for search and rescue operations during large-
scale disasters such as earthquakes. Robots are required for emergency responses
and for the restoration of disaster sites, which are difficult and dangerous tasks
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Fig. 1. Hose-shaped rescue robot. Fig. 2. Structure of hose-shaped rescue
robot.

for humans. The “Tough Robotics Challenge” is one of the research and devel-
opment programs in the Impulsing Paradigm Change through Disruptive Tech-
nologies Program (ImPACT) [1]. One of the robots developed in this program is
a hose-shaped rescue robot [2]. This robot is long and slim like a snake, allowing
it to investigate narrow spaces into which conventional remotely operable robots
cannot enter. This robot searches for a disaster victim by capturing his/her voice
using a microphone array attached around itself at regular intervals. However,
there is a serious problem of “ego noise”. This noise is generated by the vibration
motors used to move the robot via the vibrating cilia tape wrapped around the
robot. In this study, we focus on reducing the ego noise from the sound recorded
by the microphone array of the robot.

Recently, many ego noise reduction methods have been proposed [3-6]. In
addition, the many microphones on the hose-shaped rescue robot enable the
application of the overdetermined source separation method. However, the micro-
phone arrangement changes as the robot moves, making it difficult to control
the microphone array geometry. Hence, in [7], we proposed a noise reduction
method for the hose-shaped rescue robot combining determined rank-1 mul-
tichannel nonnegative matrix factorization [8,9] proposed by Kitamura et al.
which can be interpreted as an independent low-rank matrix analysis (hereafter
referred to as ILRMA), and a noise canceller (NC). As a reference input of the
NC, we used the sum of all the noise components of the ILRMA outputs. On the
other hand, in this study, we use a multichannel NC and confirm the applicability
of the proposed method for reducing ego noise.

2 Hose-Shaped Rescue Robot and Ego Noise

2.1 Hose-Shaped Rescue Robot

Figure 1 shows an image of the hose-shaped rescue robot and Fig.2 shows its
structure. The hose-shaped rescue robot basically consists of a hose as its axis
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Fig. 3. Principle of movement of hose-shaped rescue robot [2].

with cilia tape wrapped around it; it moves forward slowly as a result of the
reaction between the cilia and floor through the vibration of the cilia tape with
the vibration motors. Figure3 schematically shows the principle of movement
of the hose-shaped rescue robot. When the motors vibrate, state (1) changes
to state (2) through the friction between the cilia and the floor, then state
(2) changes to state (3) as a result of the cilia slipping. The hose-shaped rescue
robot moves by repeating such changes in its state. It performs various sensing
functions using sensors such as microphones, cameras, an inertial measurement
unit and light sensors.

2.2 Problem in Recording Speech

Recording speech using the hose-shaped rescue robot has a serious problem.
During the operation of the robot, very loud ego noise is mixed in the input to
the microphones. The main sources of the ego noise are the driving sound of
the vibration motors, the fricative sound generated between the cilia and floor,
and the noise generated by microphone vibration. In an actual disaster site, the
voice of a person seeking help is not sufficiently loud to capture and it is smaller
than the ego noise.

3 Overview of Independent Low-Rank Matrix Analysis

Recently, many ego noise reduction methods have been proposed [3-6]. In [3],
noise reduction based on generalizations of K-singular value decomposition (K-
SVD) was proposed, which can be used for an underdetermined multichannel
situation. Also, the authors of [4,5] proposed a method of improving the perfor-
mance of ego noise reduction using an adaptive microphone array geometry. On
the other hand, the many microphones on the rescue robot enable the applica-
tion of an overdetermined source separation method. In a determined situation,
independent vector analysis (IVA) [10-12] is a commonly used method. IVA
requires independence between the sources to estimate a demixing matrix. In
general, in IVA, a spherical multivariate distribution is assumed as the source
model to ensure a higher-order correlation between the frequency bins in all
sources. However, this model does not include any particular information on the
sources, that is, IVA cannot capture specific spectral structures of the sources.
Thus, the utilization of nonnegative matrix factorization (NMF) [13-15] as the
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Fig. 4. Decomposition model of NMF.

source model has been proposed [8,9], which enables us to capture the spectral
structures.

NMF decomposes a given spectrogram into several spectral bases T and
temporal activations V', as shown in Fig.4, then the decomposed components
are clustered into each source. Multichannel NMF (MNMF) [16-18] is one of
the techniques for clustering the NMF bases and activations using a sourcewise
spatial model. MNMF separately models the mixing system and the nonnegative
power spectra of sources. However, this method is strongly dependent on its
initial values because there are no constraints in the spatial models.

To solve the problem of MNMF, ILRMA [8,9] was proposed, in which a
rank-1 spatial model is introduced into MNMF [18]. This method estimates
a demixing matrix while representing a source using NMF bases, and can be
optimized by the update rules of IVA and conventional single-channel NMF.
Therefore, ILRMA is a method that unifies IVA and NMF.

Since the hose-shaped rescue robot moves very slowly and the spatial loca-
tions of the sources and microphones barely change, we can assume a linear
time-varying mixing system. In this case, ILRMA is effective for the separation
because it does not require the locations of the sources and microphones. In
particular, ILRMA can efficiently capture the time-frequency structure of the
ego noise because it is the repetition of several types of similar spectra.

3.1 Formulation

We assume that M sources are observed using M microphones (determined case).
The sources, the observed and separated signals in each time-frequency slot are
as follows:

sij = (sij1 -+ sijar)’, (1)
@i = (Tija - Tijam)' (2)
Yij = Yij1 - Yijm)' (3)

where 1 < ¢ < T and 1 < j < J are indexes of frequency and time, respectively,
and ¢ denotes the vector transpose. All the entries of these vectors are complex
values. When the window size in an STFT is sufficiently longer than the impulse



Ego Noise Reduction Combining ILRMA and Multichannel NC 145

response between a source and microphone, we can approximately represent the
observed signal as

:Blj = Aisij. (4)
Here, A; = (a;1 -+ a;n) is an M x M mixing matrix of the observed signals.
When W; = (w;1 -+ wi,M)h denotes the demixing matrix, the separated signal
Yij is represented as

Yi; = Wiz, (5)

where " is the Hermitian transpose.

3.2 Independent Low-Rank Matrix Analysis

We use ILRMA [8,9] to impose a rank-1 spatial model on MNMF [18]. We
explain the formulation and algorithm derived by Kitamura et al. [8,9] MNMF
is an extension of simple NMF for multichannel signals. The observed signals
are represented as

xij = xijw?jv (6)

where X;; of size M x M is the correlation matrix between channels. The diagonal
elements of X;; represent real-valued powers detected by the microphones, and
the nondiagonal elements represent the complex-valued correlations between the
microphones. The separation model of MNMF Xij used to approximate X;; is
represented as

Z

ij ng Z Hz m Z ti ,mUlj,m;s (7)

where m = 1--- M is the index of the sound sources. H; ,,, is an M x M spatial
covariance matrix for each frequency ¢ and source m, and H; ,, = aiymaﬁm is
limited to a rank-1 matrix. This assumption corresponds to t; ., € R4 and
vij,m € R4 being the elements of the basis matrix T, and activation matrix V,,,
respectively. This rank-1 spatial constraint leads to the following cost function:

0= Z Z ZJy” ml” —2log | det W;| + Z logzl: timVijm |, (8)

m

namely, the estimation of H;,, can be transformed to the estimation of the
demixing matrix W;. This cost function is equivalent to the Itakura-Saito diver-
gence between X;; and X;;, and we can derive
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where e, is a unit vector whose mth element is one. We can simultaneously esti-
mate both the sourcewise time-frequency model 7;; ., and the demixing matrix
W, by iterating (9)—(13) alternately. After the cost function converges, the sep-
arated signal y;; can be obtained as (5). Note that since the signal scale of
y;; cannot be determined, we apply a projection-back method [19] to y;; to
determine the scale.

The demixing filter in ILRMA is time-invariant over several seconds. To
achieve time-variant noise reduction, in a previous study [7], we applied a single-
channel NC for the postprocessing of ILRMA to reduce the remaining time-
variant ego noise components. An NC usually requires a reference microphone
to observe only the noise signal. Thus, we utilized the noise estimates obtained
by ILRMA as the noise reference signals.

4 Multichannel Noise Canceller

4.1 Conventional Method

The NC proposed in [7,20] requires a reference microphone located near a noise
source. The recorded noise reference signals nq(t), . .., ng(t) are utilized to reduce
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Fig. 5. Noise canceller.



Ego Noise Reduction Combining ILRMA and Multichannel NC 147

the noise in the observed speech signal s (t) as shown in Fig. 5. We here assume
that both s1(¢) and nq(¢),...,nk(t) are simultaneously recorded. The observed
signal contaminated with the noise source can be represented as

ys(t) = s1(t) + na(t) + - - - 4+ ng(t). (14)

We can consider that the noise signal n,.(t) is strongly correlated with the refer-
ence noise signal y, (t) and that n,.(t) = n1(t) + - - + ng(t) can be represented
by a linear convolution model as

nr(t) = ﬁr(t) - ’:L(t)tyn(t)v (15)

where Y, (t) = [yn(t) yn(t—1) -+ y,(t—N+1)]* is the reference microphone input
from the current time ¢ to the past N samples and h(t) = [hy(t) ha(t) - - - hy (1))
is the estimated impulse response. From (15), the speech signal s;(t) is extracted
by subtracting the estimated noise h(t)!y, () from the observation as

2(t) = x(t) = h()'ya(t), (16)

where z(t) is the estimated speech signal.

4.2 Proposed Method

In the conventional NC proposed in [7,20], we used the sum of all the noise
components of the ILRMA outputs applied projection-back method to the same
microphone. This means that the change in each mixing system hq, ha, ..., hg in
Fig.5 is the same. However, the mixture systems may change differently accord-
ing to the noise sources. Thus, in this study, we use a multichannel NC. Figure 6
shows the multichannel NC model. In this model, the filter of the multichannel
NC is estimated for each noise source. Thereby, the filter and noise can be more
precisely estimated. The filter fz(t) can be obtained by minimization of the mean
square error. In this paper, we use the normalized least mean square (NLMS)
algorithm [21] to estimate h(t). From the NLMS algorithm, the update rule of

the filter h(t) is given as
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Fig. 6. Multichannel noise canceller.
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z
T‘Q Yn(t), (17)
where

18

t) =1 (18)
R (t) = [ho(t) huea(8) -+ b v -2 (1)) (19)
Yn(t) = [Yn1(t)" Yn2(t)" - yur(t)]", (20)
Yk (t) = [Ynk (1), Yur(t = 1), ynr(t = N + 1], (21)

4.3 Flow of the Proposed Method

Figure 7 shows the flow of the proposed method. In Fig.7, yi(s), - .-, ys@) are
the ILRMA outputs, y,(t) is the speech signal estimated by ILRMA, and y,1(s),

-+s Yn7(t) are the residual outputs corresponding to the various components of
ego noise. In the first step, the observed signals are separated into independent
signals via ILRMA, where the number of separated signals is the same as the
number of microphones (M = 8). Note that ILRMA cannot determine the order
of the output signals. Therefore, we must find an estimated signal that includes
most of the speech components to be used as y;(¢). In this paper, we manually
choose the speech estimate from the output signals, while such speech estimate
detection may be possible by employing statistics or spectrograms of the out-
put signals. Since a time-invariant spatial demixing matrix (demixing filter) is
applied for the separation in the first step, the ego noise, which does not follow
the time-invariant assumption, remains in the separated speech signal y; (). In
the second step, we apply the multichannel NC with the ego noise reference
signals Yn1(s), - - -5 Yn7(r)- In this step, we expect that the multichannel NC will
reduce the residual noise component in y;(t) because the multichannel NC mod-
els the time-variant noise as Ry (8) yn1 (), ..., hr(t)y,r(t), which can update
the filter Iil(t), . ,h}(t) for each time sample.

5 Experiment

5.1 Conditions

In this experiment, we measured an observed signal using the hose-shaped rescue
robot. This robot consists of eight microphones and seven vibration motors, and
its total length is approximately 3m. The recorded speech signal was produced
by convolving a dry speech signal and the measured impulse responses between
a disaster victim and the microphones on the robot. For the noise signal, we
recorded actual ego noise by moving the robot in an area that simulated a
disaster site. The observed multichannel signals were obtained as the sum of
these speech and ego noise signals in each microphone, namely, they were a
mixture of time-invariant speech and time-variant actual ego noises. In addition,
we compared three methods: simple ILRMA, ILRMA with a single-channel NC,
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Fig. 7. Flow of proposed method.

Table 1. Experimental conditions

Sampling frequency 16 kHz
Window length 1024 samples
Window shift STFT length/4
Number of bases 15

Number of iterations 100

Filter length of noise canceller | 1600 taps
Step size of NLMS 0.1
Input SNR 0, =5, —10 dB

and the proposed method (ILRMA + multichannel NC). The signal-to-distortion
ratio (SDR) and the signal-to-interference ratio (SIR) [22] were used to evaluate
the separation performance. The other experimental conditions are shown in
Table 1. The estimated signal that includes most of the speech components was
projected back to microphone 1. Also, each estimated noise signal was projected
back to microphone 2.

5.2 Results

Figure 8 shows the improvements in the SDR and SIR for each method. The
results show that the multichannel NC improves the separation performance.
This is because the multichannel NC efficiently estimates the changes in each
filter from the estimation result of ILRMA.
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Fig. 8. (a) SDR and (b) SIR improvements for recording at SNRs = —10, —5 and 0
dB.

6 Conclusion

To enhance speech signals recorded by a hose-shaped rescue robot, we have
proposed an ego noise reduction method using ILRMA and multichannel NC.
We evaluated the proposed method by an experiment and compared ILRMA,
ILRMA with a single-channel NC, and ILRMA with a multichannel NC in terms
of the SDR and SIR. It was found that the proposed method exhibited the best
performance under all conditions, thus confirming the effectiveness of combining
ILRMA and the multichannel NC.
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