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ABSTRACT

This paper proposes a blind synchronization of ad-hoc microphone
array in the short-time Fourier transform (STFT) domain with the
optimized frame analysis centered at non-integer discrete time. We
show that the drift caused by sampling frequency mismatch of asyn-
chronous observation channels can be disregarded in a short inter-
val. Utilizing this property, the sampling frequency mismatch and
the recording start offset are estimated roughly by finding two pairs
of the short intervals corresponding to the same continuous time.
Using the estimate, STFT analysis is synchronized roughly between
channels with optimized frame central. Since the optimized frame
central is generally non-integer, we approximate the frame analy-
sis by the linear phase filtering of the frame centered at the nearest
integer sample. Maximum likelihood estimation refines the com-
pensation of sampling frequency mismatch.

Index Terms— Ad-hoc microphone array, sampling frequency,
maximum likelihood estimation, blind source separation

1. INTRODUCTION

Ad-hoc microphone array has attracted increasing attention in as-
sociation with development of mobile recording devices [1]. By
using simultaneous recording with separate mobile devices such as
cell phones, voice recorders, video camera etc. as multichannel
observation, microphone array technology obtains accelerated ap-
plicability. However, increased freedom brings various difficulty.
Especially the asynchronous sampling of each channel causes drift
of time, which seriously degrades time-difference analysis of array
signal processing [2].

While many of the compensation methods of sampling fre-
quency mismatch requires some prior information [1, 2, 3], we pro-
posed fully blind compensation [4]. By disregarding small drift in-
side short-time frames, the compensation reduced to the small shift
of the frames. To process very small time shift accurately, the com-
pensation was conducted as linear phase filtering in the short-time
Fourier transform (STFT) domain. Also the sampling frequency
mismatch is estimated by maximum likelihood estimation. How-
ever, with long recordings the required shift becomes significantly
large inside each frame, and the circular shift inside the frame fails
to approximate the compensation. In this paper we propose an op-
timization method of frame analysis with non-integer frame shift.
With correlation analysis, short interval pairs indicating the same
continuous times in each channel is detected. By using two pairs
of synchronous intervals, the synchronization is estimated roughly.

The small error of the synchronized STFT analysis is compensated
effectively by the maximum-likelihood linear phase.

2. PROBLEM STATEMENT

Suppose sound pressures x1 (t) and x2 (t) on two microphones are
sampled by different ADCs as x1 (n) and x2 (n), where t denotes
the continuous time and n gives the discrete time. The sampling
frequency of x1 (n) is fs, and that of x2 (n) is (1 + ϵ) fs with a di-
mensionless number ϵ. This paper assumes that the ADCs have the
common nominal sampling frequencies and |ϵ| ≪ 1. The relations
between xi (n) and xi (t) for i = 1, 2 are given by

x1 (n) = x1

(
n

fs

)
, n = 0, . . . , N1 − 1, (1)

x2 (n) = x2

(
n

(1 + ϵ) fs
+ T21

)
, n = 0, . . . , N2 − 1, (2)

where Ni is the length of the digital signal xi (n). The relation be-
tween the synchronous pair of the discrete times n1, n2 of these two
sampled signals x1 (n1), x2 (n2) correspond to the same continu-
ous time t is given by a function ϕ21 (n) as

n2 = ϕ21 (n1) , (3)
ϕ21 (n) = (1 + ϵ) (n−D21) , (4)

D21 = fsT21, (5)

where D21 stands for the discrete time of the first channel when
the recording of the second channel starts. Note that hereafter we
use the notation n1 and n2 to denote the pair of the discrete time
corresponding to the same time, and simply use the notation n when
we don’t need to consider such the correspondence. With the integer
values of n1, the corresponding discrete times n2 of the second
channel are generally non-integer. Thus to obtain the signal x̂2 (n)
of the second channel synchronized accurately to the first channel,
the following infinite convolution of the sinc functions is required.

x̂2 (n) = x2 (ϕ21 (n))

=
∞∑

n′=−∞

sinc
(
(1 + ϵ) (n− fsT21)− n′)x2

(
n′) . (6)

Since such the infinite convolution cannot be operated in practice,
some efficient approximation is necessary.

In this paper we discuss approximate synchronization of the
asynchronous channels with blind estimation of D21 and ϵ with ac-
curacy sufficient for array signal processing. Estimation accuracy
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of ϵ is critical for array signal processing because the drift makes
the time difference of arrival of each source time-varying. In con-
trast to the sampling frequency mismatch ϵ, estimation accuracy of
D21 is not significant in specific classes of array signal processing
such as blind source separation (BSS) [5] which do not use direc-
tions of arrival explicitly, and the error is accepted as long as it is
much smaller than the frame length.

3. APPROXIMATE COMPENSATION OF SAMPLING
FREQUENCY MISMATCH IN STFT DOMAIN

Since array signal processing is generally conducted in the STFT
domain, we propose the STFT expression of the approximate syn-
chronization between the channels.

3.1. Modeling sampling frequency mismatch in short-time
frames

Before we proceed to STFT analysis, we discuss the effect of the
drift in a short-time frame. We show that the sampling frequency
mismatch can be disregarded in a short interval.

The discrete time of the second channel synchronous to the
(n1 +m)-th sample of the first channel is given by the relation in
(3) as

ϕ21 (n1 +m) = (1 + ϵ) (n1 −D21) + (1 + ϵ)m

= ϕ21 (n1) + (1 + ϵ)m, (7)

and can be approximated under the condition |mϵ| ≪ 1 as

ϕ21 (n+m) ≈ ϕ21 (n) +m. (8)

Thus the discrete times n1+m and n2+m of the two channels near
the synchronous pair n1 and n2 can be regarded to be synchronous.

Therefore, a frame analysis xfr
i (l, ni) , l = 0, . . . , L− 1 of the

i-th channel of the length L (throughout this paper we assume L is
even) centered at ni, given by

xfr
i (l, ni) = w (l)xi

(
l + ni −

L

2

)
, (9)

where w (l) is an appropriate window function, is almost syn-
chronous between the channels i = 1, 2. Since the sampling fre-
quency mismatch ϵ is generally in the order of 10−5 and typical
frame length of microphone array signal processing is in the or-
der of 0.1 second, the largest approximation error |ϵL/2| of the
time, which appears in the beginning and the end of the frame with
m ≈ ±L/2 in (7) and (8), is usually below the order of 1 µs in such
a frame analysis. Note that the influence of the errors are reduced
with typical choice of the window function w (l) to suppress the
amplitude near both ends.

3.2. Approximate synchronization in STFT domain

Here we discuss the STFT expression of the approximation of
xfr
2 (l, n2) by the linear phase filtering of the frame centered at the

rounded integer sample. Although the linear phase gives the circu-
lar convolution inside the frame, its error can be disregarded with
the large frame length L≫ 1.

The STFT analysis of the i-th channel of the frame centered at
the sample n is given by

Xi (k, n) =

L−1∑
l=0

xfr
i (l, n) exp

(
−2πȷkl

L

)
, (10)

where k = −L/2, . . . , L/2 − 1 is the discrete frequency index.
Note that the transform is calculated by fast Fourier transform in
the practical processing. According to (3), the discrete time of the
second channel synchronous to the central time n1 of X1 (k, n1)
is given by n2 = ϕ21 (n1). To approximate the STFT centered
at the non-integer time ϕ21 (n1), we apply the frame analysis with
the nearest integer central time, and compensate the effect of the
rounding by the circular time shift using the linear phase filter.

First we obtain the frame analysis xfr
2 (l, ⌊ϕ21 (n1)⌉) of the sec-

ond channel x2 (n) centered at the integer sample ⌊ϕ21 (n1)⌉ near-
est to the desired central time ϕ21 (n1), given by

⌊ϕ21 (n1)⌉ = argmin
n

|ϕ21 (n1)− n| , n ∈ Z. (11)

Since the central sample ⌊ϕ21 (n1)⌉ is delayed from the non-integer
time ϕ21 (n1) by ϕ21 (n1)−⌊ϕ21 (n1)⌉, we obtain the approxima-
tion of synchronization in the STFT domain by compensating the
delay with the linear phase filter as

X̂2 (k, ϕ21 (n1)) =

X2 (k, ⌊ϕ21 (n1)⌉) exp
(
2πȷk (ϕ21 (n1)− ⌊ϕ21 (n1)⌉)

L

)
.

(12)

It is worth noting that the time domain signal x̂2 (n; ϵ,D21) ap-
proximately synchronized to x1 (n) can be given by the inverse
STFT analysis of X̂2 (k, ϕ21 (n1)) with the frame shift common
to X1 (k, n1).

4. COARSE BLIND SYNCHRONIZATION

In [4] we proposed a blind estimation of sampling frequency mis-
match ϵ and its compensation by the linear phase filtering of the
STFT analyzed analogously to the other channel. However, with
the long observation, the linear phase compensation is insufficient
because the large gaps of the frame centrals. To solve this prob-
lem, we propose a roughly synchronized STFT analysis by estimat-
ing the recording start offset D21 and the sampling frequency mis-
match ϵ roughly and substituting them in the STFT synchronization
discussed in the previous section.

4.1. Estimation with two pairs of corresponding time

Before the discussion of estimation procedure, we analyze the con-
dition that the parameters ϵ and D21 have to satisfy when two pairs
{nA1, nA2} and {nB1, nB2} of synchronous times are given:

nA2 = (1 + ϵ) (nA1 −D21) , (13)
nB2 = (1 + ϵ) (nB1 −D21) , (14)

which give ϵ and D21 as

ϵ =
nB2 − nA2

nB1 − nA1
− 1, (15)

D21 =
nA1nB2 − nA2nB1

nB2 − nA2
. (16)

Thus by estimating two pairs of corresponding times nAi and nBi,
i = 1, 2, we can obtain the estimate of ϵ and D21. Although accu-
rate estimation of the synchronized time pairs is difficult, even their
rough estimation is useful for the coarse synchronization.
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4.2. Estimating synchronous times with correlation analysis

We discuss the rough estimation of nAi, nBi for i = 1, 2. The basic
idea is that the nearly synchronous pairs of short intervals can be
detected using correlation. Since the observation is the mixture of
multiple sources with different time differences of arrival, the es-
timation of intervals has error and precise one cannot be obtained.
Thus to reduce the effect of the error in the parameter estimation in
(15) and (16), it is preferable to estimate nAi of small values and
nBi of large values. To obtain the estimation of the intervals, we an-
alyze the intervals with the amplitude exceeds the threshold near the
beginning and the end of the recording. Since it is unknown which
channel starts and ends earlier or later, the candidates of the short
intervals are chosen from both channels near each of the beginning
and the end, and choose the better one with the higher correlation
to other channel.

First, as the candidates of nAi, i = 1, 2, we find the earliest
samples n′

Aij , (i, j) = (1, 2), (2, 1) with the amplitude exceeding
the threshold δ in the region over N/2 samples later than the begin-
ning sample as

n′
Aij = argmin

n
{|xi (n)| > δ}+N/2− 1, n ≥ N/2, (17)

where N shows the length of the short interval. Similarly, as the
candidates of nBi, i = 1, 2, we find the latest samples n′

Bij , (i, j) =
(1, 2), (2, 1) with the amplitude exceeding the threshold δ in the
region over N/2 − 1 samples earlier than the end of the channel’s
recording as

n′
Bij = argmax

n
{|xi (n)| > δ} −N/2, n < Ni −N/2. (18)

Next, for each of h = A,B, (i, j) = (1, 2) , (2, 1), we find the
sample n′′

hij of xj (n) to maximize the correlation with the selected
interval as

n′′
ij = argmax

n′′

N/2−1∑
n=−L/2

xi

(
n+ n′

hji

)
xj

(
n+ n′′) . (19)

Although the direct calculation of this convolution is computation-
ally complex, equivalent operation is efficiently computed by the
FFT-based overlap-and-add convolution.

Subsequently, for each of h = A,B, we find the interval pair
with higher the correlation between the channels. We select the one
of the index pairs (i, j) = (1, 2) , (2, 1) with the higher coherence
|γh (i, j)|2 given by

(i∗h, j
∗
h) = argmax

(i,j)=(1,2),(2,1)

|γh (i, j)|2 , (20)

|γh (i, j)|2 =

∣∣∣∣∣∣∣
N−1∑

n=−L
2

xi

(
n+ n′

hji

)
xj

(
n+ n′′

hij

)∣∣∣∣∣∣∣
2

N−1∑
n=−L

2

∣∣xi

(
n+ n′

hji

)∣∣2 N−1∑
n=−L

2

∣∣xj

(
n+ n′′

hij

)∣∣2 .
(21)

Finally, nA1, nA2, nB1 and nB2 estimated by the interval pairs with
the higher coherence as

nhi∗
h
= n′

hj∗
h
i∗
h
, (22)

nhj∗
h
= n′′

hi∗
h
j∗
h
. (23)
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Figure 1: Estimation of nA1 and nA2 corresponding to the same
continuous time near the beginning of the asynchronous recording.

The parameters ϵ and D21 are roughly estimated by substituting
these in (15) and (16). Finally, these roughly-estimated parameters
are used in the STFT synchronization discussed in the previous sec-
tion to obtain.

5. FINE COMPENSATION OF SAMPLING FREQUENCY
MISMATCH

Here we discuss the fine compensation of the sampling frequency
mismatch ϵ. Since the estimation of D21 discussed in the previous
section is reliable, we estimate the parameter ϵ′ to modify the es-
timation of sampling frequency in the following form keeping the
modification of the offset as small as possible.

n2 = ϕ′
21

(
n1; ϵ

′)
= (1 + ϵ)

((
1 + ϵ′

)
(n1 −M) +M −D21

)
, (24)

where M denotes the central sample of the whole the duration of
x1 (n) the frame analysis is applied.

Since the rough estimation of ϵ is already obtained, the
modification of synchronization by ϵ′ tends to be small. Thus
the fine synchronization is conducted as the linear phase filter-
ing of X̂2 (k, ϕ21 (n1)) in (12) to obtain the modified signal
X̂ ′

2 (k, ϕ
′
21 (n1; ϵ

′,M)) as

X̂ ′
2

(
k, ϕ′

21

(
n1; ϵ

′))
= X̂2 (k, ϕ21 (n1)) exp

(
2πȷkϵ′ (n1 −M)

L

)
. (25)

The parameter ϵ′ can be optimized as a maximum likelihood esti-
mate assuming the two-channel signal given by

X̂′ (k, n1; ϵ
′) =

[
X1 (k, n1) , X̂

′
2

(
k, ϕ′

21

(
n1; ϵ

′))]T (26)

is stationary with the correctly estimated mismatch modification ϵ′

[4]. The log likelihood is given by

L
(
ϵ′
)
= −

∑
k

log det
∑
n1

X̂′ (k, n1; ϵ
′) X̂′ (k, n1; ϵ

′)H . (27)

The parameter ϵ′ can be optimized by the combination of dis-
cretized search and golden section search as in [4].

Note that the optimization of ϵ′ is equivalent to the following
update of ϵ and D21.

ϵ← (1 + ϵ)
(
1 + ϵ′

)
− 1, (28)

D21 ←
ϵ′M +D21

1 + ϵ′
. (29)
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Table 1: Experimental conditions.

Signal length [s] 3, 5, 10, 20, 30, 60, 120, 300 and 600
Reverberation time T60 of 130 ms
Frame length L 4,096 samples
Frame shift 2,048 samples
Source distances 1.5 m
Source directions [-50◦, 30◦], [-60◦, -10◦]
Microphone spacing 2 cm
N 16,000 samples
Candidates of 10 samples from
discretized search [4]

[
−2× 10−4, 2× 10−4

]

Although the synchronization of X̂′ (k, n1; ϵ
′) in the STFT domain

with the maximum likelihood estimate ϵ′ is sufficiently accurate as
we show in the experiment, it is also possible to apply other re-
sampling methods to synchronize the channels with the estimated
parameters ϵ and D21 in (28) and (29).

6. EVALUATION

To confirm the effectiveness of the proposed blind synchronization,
we gave artificial sampling frequency mismatch to observation of
two speakers’ speech with two microphones, and evaluated the ac-
curacy of the sampling frequency mismatch compensation and its
contribution to BSS.

The observed signals are made by convolution of measured im-
pulse responses and speech signals, which are generated by concate-
nation of Japanese word utterances. We evaluated all the 12 com-
binations of two speakers from two male and two female speakers.
The original sampling frequency of the observation is 16,000 Hz,
and to one channel we gave modifications of sampling frequency of
±0.5, ±1, ±1.5 Hz, which are realistic as practical bias of sam-
pling frequencies. To generate the artificial sampling frequency
mismatch, we used resampling with the polyphase filters. We used
auxiliary-function-based independent vector analysis [6] to conduct
BSS. Other conditions are listed in Table 1.

To examine accuracy of the estimation of sampling frequency
mismatch ϵ, we compared the root mean squared errors (RMSEs) of
the conventional method [4], the coarse search discussed in Sect. 4
and the proposed method in Fig. 2. It can be clearly seen that the
estimation accuracy improves with the increase of the observation
length. The estimation accuracy is improved from the coarse esti-
mate by the proposed method. The conventional and the proposed
methods performs similarly.

We compared the source separation performance in Fig. 3. The
evaluation criterion is signal-to-distortion ratio (SDR) [7]. The
curve labeled as no mismatch shows the performance of the syn-
chronized recording without the artificial mismatch, and its SDRs
are highest. We can see the very low performance of the unpro-
cessed signal and compensation of synchronization is necessary in
this condition. The performance of the conventional method de-
grades the performance with the observation longer than 30 s even
with the high accuracy similar to the proposed method despite the
accurate estimation. Thus the optimization of frame analysis is nec-
essary with such the long data. We evaluated the upper limit of the
STFT synchronization by substituting true values of ϵ and D21 in
(12), which shows small degradation of about 1 dB from the no mis-
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Figure 2: Root mean squared errors (RMSEs) of estimations of
sampling frequency mismatches ϵ.
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Figure 3: Source separation performance with SDR measure.

match. The performance of the proposed method has little degrada-
tion from the upper limit. Note that such the small error is kept
with the observation longer than 600 ms. Therefore it is confirmed
that the proposed synchronization successfully recovers the source
separation performance.
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