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In this paper, we propose a novel method for the blind compensation of drift for the
asynchronous recording of an ad hoc microphone array. Digital signals simultaneously
observed by different recording devices have drift of the time differences between the
observation channels because of the sampling frequency mismatch among the devices. On
the basis of a model in which the time difference is constant within each short time frame
but varies in proportion to the central time of the frame, the effect of the sampling
frequency mismatch can be compensated in the short-time Fourier transform (STFT)
domain by a linear phase shift. By assuming that the sources are motionless and have
stationary amplitudes, the observation is regarded as being stationary when drift does not
occur. Thus, we formulate a likelihood to evaluate the stationarity in the STFT domain to
evaluate the compensation of drift. The maximum likelihood estimation is obtained
effectively by a golden section search. Using the estimated parameters, we compensate
the drift by STFT analysis with a noninteger frame shift. The effectiveness of the proposed
blind drift compensation method is evaluated in an experiment in which artificial drift is
generated.
& 2014 The Authors. Published by Elsevier B.V. This is an open access article under the CC

BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/3.0/).
1. Introduction

Microphone array signal processing is a framework for
analyzing spatial information of a sound field observed with
multiple microphones to perform speech enhancement,
source separation, source localization, and so forth, which
are difficult by the processing of single-channel observations
[1]. Microphone arrays are used in various applications,
including teleconferencing, hands-free speech recogni-
tion, hearing aids, acoustic monitoring, spatial audio, and
er B.V. This is an open acces
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computer games. While conventional microphone array signal
processing assumes that multichannel signals are observed by
a unified analog-to-digital converter (ADC), recently increasing
attention has been focused on an extension of themicrophone
array framework, the so-called ad hoc microphone array,
where a combination of observations by independent record-
ing devices is treated as multichannel recording [2]. The non-
necessity of wired channels to achieve synchronization
enables the downsizing of the recording devices, which is
an important attribute for hearing aids [3]. In addition, this
framework is suitable for recording meetings because of the
easy construction of themicrophone array by the combination
of widely available portable recording devices, such as cell
phones, IC recorders, and video cameras, and the freedom of
the microphone arrangement, which enables recording with a
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high SNR by setting each device close to each speaker [2,4].
Also, considerable effort has been made to develop wireless
acoustic sensor networks (WASNs), where the recording
devices are connected by wireless networks [5].

However, the increased freedom of ad hoc microphone
arrays raises various issues that do not arise in conven-
tional array signal processing. For example, the array
geometry is unknown [2,6–8], the recording devices have
different unknown gains [2], each device starts recording
independently [7,8], and the sampling frequencies are not
common among the observation channels [9–15]. Also, in
WASNs, the efficiencies of communication and distributed
computation are important issues to achieve array signal
processing with a limited bandwidth and array nodes with
low computational power [5].

Among these issues of ad hoc microphone arrays, one
of the most important is the mismatch of sampling
frequencies. Since each ADC is not synchronized with the
others, the individual variability of clocks results in a slight
mismatch of the sampling frequencies, causing a change in
the time difference between channels due to the constant
skew, the so-called drift. Array signal processing generally
assumes that the sources do not move and utilizes the
phase differences inherent to the positions of the sources.
However, drift causes the phase differences to constantly
change as if the sources are moving, preventing the use of
array signal processing to analyze phase differences
assuming static sources [10,11]. Also, the asynchronous
recording causes offsets of the recording start time.
Estimation and compensation of the sampling frequency
mismatch and recording start offset are indispensable as
preprocesses in array signal processing.

While there are two types of methods for estimating
the sampling frequency mismatch, i.e., supervised and
unsupervised, our research focuses on unsupervised
estimation. The former, supervised estimation, mainly
estimates the relation between the clock time of the ADC
and the absolute time by using the time stamp received
from satellites or wireless networks [9,13–15]. While the
advantage of this approach is that the recording start offset
can be estimated in addition to the sampling frequency
mismatch, the disadvantage is the constraint that the
recording devices must have the ability to receive the
time stamp. Another problem is that the accuracy of the
time stamp is generally much lower than that required in
array signal processing, and training involving the long
observation of time stamps is required for accurate esti-
mation. Unsupervised estimation cannot obtain a precise
estimate of the recording start offset without prior infor-
mation. Inaccurate compensation of the recording start
offset is problematic with particular classes of supervised
array signal processing which receive time differences of
arrival (TDOAs) of positions of specific sources as prior
information because the offset changes the relation
between the TDOAs and the positions. However, in a blind
scenario of array signal processing such as blind source
separation (BSS) [16], where only the observation is given,
a rough compensation of the recording start offset is
sufficient. Therefore, in this paper we focus on the accurate
compensation of the drift and the rough compensation of
the recording start offset in an unsupervised manner.
To the best of our knowledge, there have been few
works on the blind estimation of sampling frequency
mismatch. Liu et al. proposed a method of estimation
involving the iteration of independent component analysis
(ICA) and evaluation of the correlation between the
estimated independent components by utilizing the prop-
erty that ICA can extract uncorrelated independent sources
only when the drift is well compensated [10]. However, its
applicability is limited to determined systems with equal
numbers of sources and microphones so that the indepen-
dent components can be extracted. Markovich-Golan et al.
estimated the sampling frequency mismatch as the rate of
change of the phase in the interchannel correlation of a
noise observation [12]. The modeling of the sampling
frequency mismatch using the phase is very similar to
our proposed framework, which is discussed later. How-
ever, the scenario of this method, which assumes voice
activity detection (VAD), is different from our fully blind
estimation scenario.

In this paper, we propose a novel method for blind drift
compensation by maximum likelihood estimation of the
sampling frequency mismatch in the short-time Fourier
transform (STFT) domain. The basic idea of the maximum
likelihood estimation is published in a previous conference
proceedings paper [17]. The optimization algorithm is
followed by resampling as a modification of the STFT
analysis with a noninteger frame shift, which we proposed
in another conference proceedings paper [18]. In addition,
we newly propose an iterative algorithm for estimating the
recording start offset and sampling frequency mismatch,
which enables the accurate compensation of drift even
with a long observation. We model the drift in the STFT
domain as a linear phase by ignoring the drift inside each
short time frame. By assuming that the sources are
unmoving and have stationary amplitudes, the sound
wave to be observed is regarded as stationary regardless
of the number of sources. Since the stationarity collapses
with the pseudo-movement of the sources caused by drift,
the stationarity can be a cue to estimate the drift. Thus, we
derive a likelihood function in the STFT domain to measure
the stationarity and evaluate the compensation of the
sampling frequency mismatch. The maximum likelihood
estimate is searched for efficiently by performing a golden
section search. We also show that the likelihood function
evaluates the coherence between the channels. To com-
pensate the recording start offset, we shift the observed
signal in the time domain to maximize the interchannel
correlation of the signals with the sampling frequency
mismatch compensated. Since the accuracies of the
estimation of the offset and the compensations of the drift
are mutually dependent, particularly when the observa-
tion is long, we iterate these procedures. We evaluate the
effectiveness of the proposed method of blind drift com-
pensation in an experiment to emulate the asynchronous
recording of an ad hoc microphone array by giving an
artificial sampling frequency mismatch.

The rest of the paper is organized as follows. In
Section 2, we formulate the asynchronous observation of
the ad hoc microphone array. In Section 3, we describe our
modeling of the drift in the STFT domain. In Section 4, we
derive the likelihood function used to estimate the
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sampling frequency mismatch, carry out an efficient
search for the maximum likelihood estimate, and analyze
the properties of the likelihood function. In Section 5, we
describe STFT analysis with noninteger frame shift for
computationally simple resampling. In Section 6, we
describe the whole algorithm used in the proposed
method of
blind drift compensation. In Section 7, we evaluate the
effectiveness of the proposed method. Finally, the paper is
concluded in Section 8.
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Fig. 1. Conceptual diagram of the asynchronous recording in the case
when the analog waveforms of the two channels are the same, i.e.,
x1ðtÞ ¼ x2ðtÞ. The sampling frequency mismatch with ϵ40 expands the
digital waveform of x2½n�. (a) Analogue waveform and sampling and (b)
Resultant digital waveform with drift.
2. Effect of sampling frequency mismatch on discrete
signals

We suppose that sound pressures x1ðtÞ and x2ðtÞ on two
microphones are sampled by different ADCs, where t
denotes the continuous time. The sound pressures are
observed as the discretized signals denoted as x1½n�
for n¼ 0;…;N1�1 and x2½n� for n¼ 0;…;N2�1, where n
denote the discrete time, and Ni for i¼1, 2 is the number of
observed samples of the ith channel, and N1 and N2 are not
necessarily the same. Throughout this paper, the notations
ð�Þ and ½�� are used for denoting continuous and discrete
time signals, respectively. Although the signals are avail-
able as observation only at the integer-valued discrete
times, we accept the noninteger values of the discrete
times. We also suppose that the sampling frequency of
x1½n� is f s and that of x2½n� is ð1þϵÞf s for a dimensionless
number ϵ used to define the sampling frequency mis-
match, without loss of generality. In this paper, we assume
that the ADCs have common nominal sampling frequen-
cies and that jϵj51. Note that we focus on the compensa-
tion of drift between two channels in this paper, but the
extension to an arbitrary number of channels can be
carried out easily. The relations between xi½n� and xiðtÞ
for i¼1,2 are given by

x1 n½ � ¼ x1
n
f s

� �
; ð1Þ

x2 n½ � ¼ x2
n

ð1þϵÞf s
þT21

� �
; ð2Þ

where the origin of the continuous time t¼0 is defined as
the time when the sampling of x1½n� starts, and T21 is the
continuous time when the sampling of x2½n� starts. The
discrete times of these two channels have independent
correspondence to the continuous time as described in (1)
and (2), and the phase difference between the channels
linearly changes according to the time, hereafter we refer
this behavior as drift. Fig. 1 shows a conceptual diagram of
the asynchronous recording in the case that x1ðtÞ ¼ x2ðtÞ.
We denote the pair of discrete times corresponding to the
identical continuous time t as n1 for the first channel and
n2 for the second channel. Then the discrete time pair n1
and n2 satisfies the following condition:

n2 ¼ ð1þϵÞðn1�D21Þ; ð3Þ

D21 ¼ f sT21; ð4Þ
where D21 denotes the discrete time of the first channel
when the recording of the second channel starts. Note
that hereafter we use the notation of the pair n1 and n2
when we consider the correspondence to the identical
continuous time.

According to the above modeling of the sampling of the
asynchronous recording, the discretized signal x̂2½n� of the
second channel with precise synchronization to the first
channel is given as

x̂2 n½ � ¼ x2
n
f s

� �
¼ x2½ð1þϵÞðn�D21Þ�: ð5Þ

Thus, to achieve the synchronization, we have to obtain
the amplitude of the second channel at the noninteger-
valued discrete times ð1þϵÞðn�D21Þ, and the problem
reduces to resampling. The precise resampling is given
by the following infinite convolution of the sinc function:

x̂2½n� ¼ ∑
1

n0 ¼ �1
sincðð1þϵÞðn� f sT21Þ�n0Þx2½n0�: ð6Þ

Since an infinitely long observation is unavailable in
practice, the infinite convolution has to be approximated,
for example, by a truncated convolution. Additionally,
a simplified model is necessary to formulate an effective
estimate of the unknown mismatch parameters.

3. Modeling of sampling frequency mismatch in STFT
domain

3.1. Statement of problem

Here we discuss the modeling and compensation of the
sampling frequency mismatch, which is the basis of the
proposed method. Since parameter estimation in array
signal processing is generally formulated as statistical
optimization in the STFT domain, it is sufficient to com-
pensate for the effect of drift appearing in the STFT
domain. Thus, the analysis in the STFT domain is appro-
priate for the estimation and compensation of drift as
a preprocessing step in array signal processing.



L

L/2

m
n1

2
Lm − 1

2
−+

Lm

Fig. 2. Discrete time n1 of the first channel in the frame centered at
sample m.

S. Miyabe et al. / Signal Processing 107 (2015) 185–196188
We define the STFT signal Xiðk;mÞ, i¼ 1;2; k¼
�L=2;…; L=2�1 obtained by the frame analysis of xi½n�
centered at the mth sample with a window of length L
samples as

Xi k;mð Þ ¼ ∑
L�1

l ¼ 0
w lð Þxi lþm� L

2

� �
exp �2πjkl

L

� �
; ð7Þ

where wðlÞ is an appropriate window function, k is the
discrete frequency index, and j¼

ffiffiffiffiffiffiffiffi
�1

p
. We assume that

L is even. Note that the discrete Fourier transform is
substituted by the fast Fourier transform in practical
processing.

We discuss the correspondence between n1 and n2
inside the frame centered at sample m in the first channel,
i.e., m�L=2rn1rmþL=2�1 as shown in Fig. 2. From (3),
the following correspondence is obtained:

ðn2�mÞ�ðn1�mÞ ¼ ϵmþϵðn1�mÞ�ð1þϵÞD21: ð8Þ
Considering that ðn1�mÞ is the time inside the frame, the
terms on the right side of (8) have the following
properties:
�
 The first term ϵm increases or decreases in proportion
to the frame central time m.
�
 The second term ϵðn1�mÞ is proportional to the time
inside the frame.
�
 The third term ð1þϵÞD21 originates from the difference
in the recording start times.

3.2. Constant-drift model within frame

Let us start from the second term on the right of (8).
Suppose that both ϵ and L are small and their product is
much smaller than one sampling interval,

jϵLj51: ð9Þ
Then we obtain the following approximation because
�L=2rn1�mrL=2�1:

ðn2�mÞ�ðn1�mÞ � ϵm�ð1þϵÞD21; ð10Þ
which indicates that the drift inside each frame is suffi-
ciently small to be ignored. In addition, if the frame of the
second channel is centered at

ϕ21ðmÞ ¼ ð1þϵÞðm�D21Þ; ð11Þ
then the frame is synchronous with the frame of the first
channel centered at the mth sample because of the
correspondence between n1 ¼m and n2 ¼ϕ21ðmÞ, indicat-
ing an identical continuous time.

3.3. Compensation model of sampling frequency mismatch
in STFT domain

Next, we discuss the third term �ð1þϵÞD21 on the right
of (8), which is caused by the difference in the recording
start times. Although accurate estimation of the difference
in the recording start times is difficult, a small error is
acceptable for the class of array signal processing without
the TDOA prior such as BSS, as described in Section 1. Thus,
the satisfactory compensation of the recording start offset
with the error much smaller than the frame size is
obtained by the time shift with the maximum correlation.
We now redefine the discrete time of the second channel
so that the recording start offset is compensated as
D21 � 0, with n2 ¼ 0 corresponding to n1 � 0. Then (10) is
approximated as

ðn2�mÞ�ðn1�mÞ � ϵm: ð12Þ
If, for the central samples m of all the frames, the

condition

jϵmj5L ð13Þ
is satisfied and the shift of the frame is much smaller than
the frame size L, the time difference ϵm in (12) can be
regarded as a small shift of the whole signal inside each
frame. Such a small shift can be compensated by a linear
phase in the STFT domain as

X̂2 k;m; ϵð Þ ¼ X2 k;mð Þ exp 2πjkϵm
L

� �
ð14Þ

to obtain the STFT signal X̂2ðk;m; ϵÞ with the sampling
frequency mismatch compensated.

3.4. Trade-off in frame size

To obtain the compensation model of (12), we intro-
duced two assumptions in (9) and (13) related to the frame
size L. These assumptions contradict each other when
the sampling frequency mismatch ϵ is large and the signal
lengths N1 and N2 are large, as summarized in the
following:
1.
 If L is large, (9) cannot be satisfied and the drift inside
each frame becomes too large to ignore.
2.
 If L is small, (13) cannot be satisfied, and the drift
cannot be compensated by a linear phase in the STFT
domain as in (14), particularly when the observation is
long and jmj takes a large value.

Thus, the frame size has to be chosen carefully. We show
a conceptual diagram of the trade-off in Fig. 3.

The drift inside each frame is unignorable when the
sampling frequency mismatch ϵ and the frame length L are
large and the condition in (9) cannot be satisfied. As can be
seen in Fig. 3, the largest effect of the drift inside the frame
appears in both ends of the frame with the error of the
discrete time of jϵL=2j samples. Such that the time error of
jϵL=2j samples corresponds to the error of the phase jπjkϵj
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Fig. 3. Trade-off in the frame length L.

S. Miyabe et al. / Signal Processing 107 (2015) 185–196 189
at the discrete frequency k, and the effect of the drift inside
the frame is large at high frequencies. The typical quantity
of the error is in the order of 10 μs with the sampling
frequency normally in the order of 10�5 and the frame
analysis with the length of the order of 0.1 s. Note that the
effect of the errors is reduced with a typical choice of the
window function wðlÞ to suppress the amplitude near
both ends.

In contrast to the condition so that we can ignore the
drift inside frames, the condition in (13) to approximate
the shift of the signal with the linear phase is that the
frame length L is much larger than the signal shift
jϕ21ðmÞ�mj � jϵmj. It is hard to satisfy this condition
when the observation is long and the sampling frequency
mismatch ϵ is large. We show a typical example. Suppos-
ing we observe signals of the length 10 s with a nominal
sampling frequency of 16 kHz, and D21 � 0. With a sam-
pling frequency mismatch of ϵ¼ 5� 10�5 and a window
length of L¼2048, the maximum shift of the signal in the
last frame is about 8 samples, which is sufficiently small to
be approximated by a linear phase. However, for a longer
observation, the time shift becomes closer to the frame
length L, and exceeds the frame length in the case of
observation for longer than 2560 s.

To solve the trade-off, we employ the optimization of
the STFT analysis with the noninteger frame shift as
described in Section 5. With the optimized STFT analysis,
we do not need to consider the condition in (13), and the
frame length L should be decided considering the condi-
tion in (9) and the suitable frame length for the array
signal processing.

4. Maximum likelihood estimation of sampling
frequency mismatch assuming spatial stationarity

4.1. Probabilistic model in STFT domain

The drift caused by the sampling frequency mismatch
causes the TDOAs of each sound source to change slowly
with time as if the source is moving. Thus, if the move-
ments of sources are not large, the compensation of the
sampling frequency mismatch can be evaluated by con-
sidering how static the TDOAs are. Also, by assuming that
the sources are stationary, spatial stationarity can be used
as a measure of the sampling frequency mismatch. With
these assumptions, we derive a likelihood for the sampling
frequency mismatch using the compensation model given
by (14). Note that in this section we assume that the
condition in (13) is satisfied, and the model mismatch is
fixed in the algorithm described in Section 6.

We assume that all the sources are stationary and that
their amplitudes are stationary on a long-term basis. Then
the compensated observed signal X̂ ðk;m; ϵÞ expressed in
vector notation, given by

X̂ ðk;m; ϵÞ ¼ ½X1ðk;mÞ; X̂2ðk;m; ϵÞ�T; ð15Þ
where f�gT denotes matrix transposition, is regarded as
a stationary random variable if the sampling frequency
mismatch ϵ is estimated accurately. We also assume that
the compensated observation X̂ ðk;m; ϵÞ with the statio-
narity recovered by the precise estimation of ϵ has a zero-
mean bivariate complex normal distribution for each
frequency bin k, whose density of each frequency bin is
given by

p X̂ k;m; ϵð Þ;V kð Þ
� �

¼ expð� X̂ ðk;m; ϵÞHVðkÞ�1X̂ ðk;m; ϵÞÞ
π2 det VðkÞ ;

ð16Þ
where VðkÞ denotes the covariance matrix. Thus, accurate
estimation of ϵ recovers the stationarity of X̂ ðk;m; ϵÞ and
maximizes the following log likelihood function JðV; ϵÞ,
which evaluates the fit with the zero-mean bivariate
normal distribution:

JðV; ϵÞ ¼ ∑
k;m

log pðX̂ ðk;m; ϵÞ;VðkÞÞ

¼ ∑
k;m

ð� log π2� log det VðkÞ

� X̂ ðk;m; ϵÞHVðkÞ�1X̂ ðk;m; ϵÞÞ; ð17Þ
where f�gH denotes conjugate transposition. V denotes the
group of all covariance matrices VðkÞ for k¼ �L=2;…;

L=2�1, which can be substituted by the following sample
estimate:

V kð Þ’ 1
j8mj∑m

X̂ k;m; ϵð ÞX̂ ðk;m; ϵÞH; ð18Þ

where j8mj denotes the number of frames. By substituting
(18) and omitting the constants, a simplified version JðϵÞ of
the log likelihood function JðV; ϵÞ is given by

JðϵÞ ¼ �∑
k
log det∑

m
X̂ ðk;m; ϵÞX̂ ðk;m; ϵÞH: ð19Þ

Note that the sum of the quadratic forms in the last term of
(17) is constant with the sample estimate of the covariance
matrix given by (18), as

∑
m
X̂ ðk;m; ϵÞHV kð ÞX̂ k;m; ϵð Þ

¼∑
m
X̂ ðk;m; ϵÞH ∑m0 X̂ ðk;m0; ϵÞX̂ ðk;m0; ϵÞH

j8mj

 !�1

X̂ k;m; ϵð Þ

¼ 2j8mj: ð20Þ
Unfortunately, an estimate of ϵ that maximizes the like-
lihood JðϵÞ cannot be obtained analytically. In addition, as
plotted in Fig. 4, JðϵÞ has not only a clear global maximum
but also several local maxima. We discuss an effective
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Table 1
Algorithm of the golden section search used to search for the maximum
of JðϵÞ.

Definition and initialization:

Set φ¼def ð
ffiffiffi
5

p
�1Þ=2, a’ϵdn �1, b’ϵdn þ1.

Step 1:
Set p’b�φðb�aÞ, q’aþφðb�aÞ.
Calculate JðpÞ and JðqÞ.

Step 2:
If JðpÞr JðqÞ

Set a’p, p’q, q’aþφðb�aÞ.
Else

Set b’q, q’p, p’b�φðb�aÞ.
End if

Step 3:
If b�a4ρ

Go back to Step 1.
Else

Obtain the result ϵ’ðaþbÞ=2.
Terminate the algorithm.

End if
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search method to obtain the global maximum in the
following.

4.2. Efficient optimization of maximum likelihood estimate
by golden section search

Since the only parameter to be estimated in the max-
imization of the likelihood is the sampling frequency
mismatch ϵ, the problem reduces to a line search. If we
can assume that the log likelihood function JðϵÞ is unim-
odal, efficient optimization can be obtained by performing
a golden section search. In the example shown in Fig. 4,
JðϵÞ given by (19) is usually locally unimodal around the
global maximum. Thus, after specifying the unimodal
range including the global maximum, we perform a golden
section search.

To specify the unimodal range around the maximum,
we discretize ϵ roughly and select the discretized value
that maximizes JðϵÞ. We generate D uniform samples in the
range ½�E; E� (E40) and define the discretized values ϵd,
d¼ 0;…;D�1 as

ϵd ¼ �Eþ 2dE
D�1

: ð21Þ

Then we compare all the values of JðϵdÞ and find the
optimal index dn that maximizes JðϵdÞ as
dn ¼ argmaxd JðϵdÞ; d¼ 0;…;D�1: ð22Þ
The range parameter E can be defined easily by consider-
ing the possible range of ϵ. Since the sampling frequency
mismatch normally takes a value on the order of 10�5,
E can be set to approximately 10�4 or larger. The appro-
priate choice of D depends on the setting of E and the
signal characteristics. At least for the observation of
speech, the shape tends to be similar to the example in
Fig. 4, and the appropriate value of D should satisfy the
condition 2E=ðD�1Þo10�4.

After the search of the discretized values to obtain the
coarse estimate ϵdn , the golden section search refines the
estimation by narrowing the search range in an iterative
manner. We show the algorithm in Table 1. The initial
search range is set to ½ϵdn �1; ϵdn þ1�, and the iteration
continues until the range shrinks to the desired resolution
ρ(40). Finally, the estimate ϵ is given as the center of the
narrowed search range.

4.3. Robustness of proposed likelihood evaluation

Here we discuss the robustness of the evaluation of
the log likelihood given by (19) against noise and the
mismatch of the Gaussian assumption. Before the discus-
sion of robustness, we simplify the log likelihood function
given in (19) by discarding the residual constants. By using
the coherence γ212ðk; ϵÞ between channels after compensat-
ing the sampling frequency mismatch ϵ, defined as

γ̂2
12 k; ϵð Þ ¼ j∑mX1ðk;mÞnX̂2ðk;m; ϵÞj2

ð∑mjX1ðk;mÞj2Þð∑mjX̂2ðk;m; ϵÞj2Þ
; ð23Þ

the log likelihood JðϵÞ is further simplified by separating
the constants as follows:

JðϵÞ ¼ �∑
k
log ∑

m
jX1ðk;mÞj2

� �
∑
m
jjX̂2ðk;m; ϵÞj2

� ��

� ∑
m
X1ðk;mÞnX2ðk;m; ϵÞ 2

		 
				
¼ �∑

k
log ð1� γ̂2

12ðk; ϵÞÞ ∑
m
jX1ðk;mÞj2

� �
∑
m
jX2ðk;mÞj2

� �� �

¼ �∑
k
logð1� γ̂2

12ðk; ϵÞÞþconst ., ð24Þ

where f�gn denotes the complex conjugate. Note that in
(24) we used the equality jX̂2ðk;m; ϵÞj ¼ jX2ðk;mÞj, which is
trivial from (14).

First, we discuss the effect of the non-Gaussianity of the
observed signal. The complex amplitudes of the acoustic
signal in the STFT domain can be regarded as having zero
mean, but it is well known that many sound sources
including speech tend to have super-Gaussian complex
amplitudes in the STFT domain. As can be seen in (24),
only the interchannel coherence is evaluated in the log
likelihood function JðϵÞ, it can be expected that non-
Gaussianity does not affect the estimation of the sampling
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Fig. 5. Example of the log likelihood function JðϵÞ for the noisy observa-
tion of a two-speech mixture with the sampling frequency mismatch
ϵ¼ �1:25� 10�4. The noise is uncorrelated white Gaussian with the SNR
of 0 dB.
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frequency mismatch ϵ so much. We will investigate this by
experiments using speech.

Next, we discuss the robustness against noise. The
estimation of ϵ is possible as long as the amplitudes at
the two microphones are correlated because the log like-
lihood function JðϵÞ evaluates only the interchannel coher-
ence γ212ðk; ϵÞ by effectively weighting the significant
frequency bins. In the frequency bins where only a few
unmoving sources are observed, high stationarity is main-
tained only when drift is compensated properly. Particu-
larly in the frequency where only one source is dominant
and the coherence γ̂2

12ðk; ϵÞ is close to one, the kth
frequency significantly affects the log likelihood JðϵÞ with
infinitely high value of � logð1� γ̂2

12ðk; ϵÞÞ. In contrast, JðϵÞ
is not strongly affected by noisy frequency bins with low
coherence because of the low value of � logð1� γ̂2

12
ðk; ϵÞÞ � 0. Therefore, the log likelihood JðϵÞ automatically
takes only the significant frequency bins into account, and
the maximum likelihood function estimation of the sam-
pling frequency mismatch is expected to have high robust-
ness against noise. Fig. 5 shows an example of the log
likelihood of an asynchronous observation of asynchro-
nous speech mixture used in Fig. 4 with the uncorrelated
white Gaussian noise imposed. We can see that the log
likelihood function JðϵÞ is slightly flattened by the noise
but the peak is still clear under this severe condition with
the very low SNR of 0 dB.

Note that we have confirmed that the stationarity can
be evaluated satisfactorily using JðϵÞ even when there are
many sources in the observation. However, the proposed
method is weak against the large movement of the sources
because the movement degrades the stationarity and
causes the time variation of the interchannel correlation.

5. Estimation of drift-compensated signal by STFT
analysis with noninteger frame shift

In this section, we describe an efficient resampling
method based on modified STFT analysis to estimate
the STFT signal with the drift compensated under the
condition that the sampling frequency mismatch ϵ and the
recording start offset D21 are given. Here we assume that
the drift inside each frame can be ignored, as discussed in
Section 3.2. This signal estimation procedure is used in
both the parameter estimation and the drift compensation
as discussed in Section 6. Although it is possible to use
various resampling methods to compensate for the drift
with the parameters ϵ and D21 given, many of the accurate
resampling methods are computationally complex. Our
proposed method is a simple modification of STFT analysis
and its computational cost is slightly larger than that of the
original analysis. Also, the time-domain signal is obtained
by inverse STFT (ISTFT) analysis.

As we showed in Section 3.2, the drift inside each frame
can be ignored under the condition given by (9) that jϵLj is
small, and the drift can be compensated by shifting the
frame central time. According to (11), the time of the
second channel synchronous with the time m at the center
of the frame of the first channel is given by ϕ21ðmÞ. Thus,
we estimate the STFT signal X2ðk;ϕ21ðmÞÞ whose frame
center is positioned at the discrete time ϕ21ðmÞ.

In the beginning, we perform the STFT analysis of x1½n�
as in (7):

X1 k;mð Þ ¼ ∑
L�1

l ¼ 0
w lð Þx1 lþm� L

2

� �
exp �2πjkl

L

� �
; ð25Þ

with a uniform integer frame shift of R samples, e.g.,
m¼ 0;R;2R;…. With such integer values of m, the corre-
sponding frame central times ϕ21ðmÞ of the second chan-
nel are generally noninteger-valued. Since the precise
estimation of the amplitude at a noninteger discrete time
is too complicated as shown in (6), we approximate the
frame analysis with the frame center rounded to the
nearest integer in the time domain, and compensate the
round-off error of the frame center by a linear phase in the
STFT domain. The rounded central time is written as
⌊ϕ21ðmÞ⌉, where ⌊ � ⌉ denotes the rounding operation to
the nearest integer, i.e.,

⌊ϕ21ðmÞ⌉¼ arg minn jϕ21ðmÞ�nj; nAZ: ð26Þ
Since the error appears as the delay of ðϕ21ðmÞ�⌊ϕ21ðmÞ⌉Þ
samples, the linear phase compensation gives X2ðk;ϕ21
ðmÞÞ as

X2 k;ϕ21 mð Þ� 
¼ ∑
L�1

l ¼ 0
w lð Þx2 lþ⌊ϕ21 mð Þ⌉� L

2

� �

�exp 2ϕjkðϕ21ðmÞ�⌊ϕ21ðmÞ⌉Þ
L

� �
: ð27Þ

Now the obtained STFT signal X2ðk;ϕ21ðmÞÞ is synchro-
nous with X1ðk;mÞ, which is analyzed using the frame shift
R. Thus, when we need to obtain the time domain signal
x̂2½n� with the drift compensation, a good approximation is
obtained by the ISTFT analysis of X2ðk;ϕ21ðmÞÞ using the
original integer frame shift R.

6. Algorithm of blind drift compensation

Here we describe an algorithm for blind compensation
of the drift combining the maximum likelihood estimation
of ϵ and the optimized STFT analysis with the noninteger
frame shift. The algorithm iteratively estimates the offset
D21 in the time domain and the sampling frequency
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mismatch ϵ in the STFT domain. Although an error of the
estimation of D21 much smaller than the frame length in
STFT analysis is accepted in array signal processing
without the use of TDOA priors, as described in Section
1, satisfactory estimation cannot be guaranteed under the
existence of drift. Also, the unignorable error of D21

degrades the estimation accuracy of ϵ owing to the
insufficient STFT analysis. Thus, the estimations of D21

and ϵ are mutually dependent, and the estimation proce-
dures are iterated to resolve the dependence.

6.1. Initial frame analysis

First we obtain the initial STFT signal with the appro-
priately compensated offset to evaluate the sampling
frequency mismatch in the STFT domain.

In this initial frame analysis, we assume that sampling
frequency mismatch does not occur, i.e.,

ϵ’0: ð28Þ
Under this assumption, an integer value of D21 with an
acceptable error much smaller than the frame length is
obtained to maximize the correlation between channels:

D21’arg maxδ ∑
minðN1 ;N2 þδÞ�1

n ¼ maxð0;δÞ
x1½n�x2½n�δ�; �N2oδoN1:

ð29Þ
Note that the error of this estimation of D21 cannot be
made sufficiently small when the assumption ϵ� 0 in (28)
has a large error and the observation length is large. Thus,
the estimation of D21 is renewed after the estimation of ϵ
in the STFT domain. Using this estimate of D21, we obtain
the STFT signal x0iðnÞ, i¼1,2 with the redefined discrete
time that cancels the offset as

x01½n�’x1½n�; ð30Þ

x02½n�’x2½n�D21�: ð31Þ
Finally, we perform the initial STFT analysis to obtain
X0
iðk;mÞ, i¼1,2 using the uniform frame shift R, e.g.,

m¼ 0;R;2R;…, for both channels, as

X0
i k;mð Þ ¼ ∑

L�1

l ¼ 0
w lð Þx0i lþm� L

2

� �
exp �2πjkl

L

� �
: ð32Þ

6.2. Estimation of sampling frequency mismatch

Here we describe the estimation of the sampling
frequency mismatch ϵ. The estimation is given as the
update for the estimate of ϵ from the current one. We
formulate this problem to obtain a parameter ϵ0 which
updates the estimation of the sampling frequency ð1þϵÞf s
as follows:

ð1þϵÞf s’ð1þϵ0Þð1þϵÞf s: ð33Þ
Although in Section 4 we assumed that the third term

�ð1þϵÞD21 on the right of (8) is zero, this term should be
considered in practical processing even though we do not
have accurate estimates of ϵ and D21 here. Since the time-
domain signal x0i½n�; i¼ 1;2 has been given a time shift to
maximize the correlation, the gap between the corre-
sponding discrete times jn2�n1j is expected to be mini-
mum around the central sample M of the samples
overlapping between the channels, where M is given by

M’
minðN1�D21;N2Þ�maxð0;D21Þ�1

2

� 

: ð34Þ

Thus, the drift-compensated STFT signal X̂
0ðk;m; ϵÞ with

the minimal effect of the third term �ð1þϵÞD21 in (8) is
obtained by a shift of the ϵðm�MÞ samples to X0

2ðk;mÞ as

X̂
0
2 k;m; ϵð Þ ¼ X0

2 k;mð Þ exp 2πjkϵðm�MÞ
L

� �
: ð35Þ

According to (19), the log likelihood function J0ðϵ0Þ used
to evaluate the compensated STFT signal X̂

0
2ðk;m; ϵ0Þ is

given as

J0ðϵ0Þ ¼ �∑
k
log det∑

m
X̂

0ðk;m; ϵ0ÞX̂ 0ðk;m; ϵ0ÞH; ð36Þ

X̂
0ðk;m; ϵ0Þ ¼ ½X0

1ðk;mÞ; X̂ 0
2ðk;m; ϵ0Þ�T: ð37Þ

The value of ϵ0 that maximizes J0ðϵ0Þ is estimated by
a simple modification of the procedure in Section 4.2,
where ϵ is substituted with ϵ0 and JðϵÞ is substituted with
J0ðϵ0Þ in which the current estimate ϵ is treated as a
constant.

Finally after the estimation of ϵ0 by the golden section
search, we update ϵ using ϵ0 as

ϵ’ð1þϵÞð1þϵ0Þ�1; ð38Þ
which gives the update of the estimated sampling fre-
quency ð1þϵÞf s in (33).

6.3. Estimation of offset

Now we describe the update of the estimation of the
offset D21. First, we obtain an estimate of the drift-
compensated time-domain signal x̂2½n� by the procedure
in Section 5 with the substitution of the estimated ϵ and
the assumption D21 ¼ 0. Then the offset D21 is estimated by
maximizing the correlation between x1½n� and x̂2½n�:

D21’arg maxδ ∑
minðN1 ;N2 þδÞ�1

n ¼ maxð0;δÞ
x1½n�x̂2½n�δ�; �N2oδoN1:

ð39Þ
Finally, we estimate the drift-compensated STFT signal

X2ðm;ϕ21ðmÞÞ by substituting the estimated parameters ϵ
and D21 again into the procedure in Section 5.

6.4. Iterative update

The estimation procedure for ϵ in Section 6.2 and that
for D21 in Section 6.3 are conducted separately. However,
the estimates of these parameters are mutually dependent
and the error of one parameter propagates to the other. In
particular, when the observation is long and ϵ is large, the
initial STFT analysis with the assumption ϵ¼ 0 is strongly
affected by the mismatch of the assumption in (12) and
degrades the estimation accuracy of ϵ in Section 6.2; thus,
the estimation accuracy of D21 in Section 6.3 is also
subsequently degraded. To achieve accurate parameter



Table 2
Iterative algorithm of blind synchronization.

Initialization:
Set the iteration number j’1.
Set ϵ’0.
Initialize X0

iðk;mÞ; i¼ 1;2 according to Section 6.1.
Step 1:

Update ϵ according to Section 6.2.
Step 2:

Update D21 and obtain X1ðk;mÞ and X2ðk;ϕ21ðmÞÞ
according to Section 6.3.

Step 3:
Set j’jþ1.
If j reaches the maximum iteration number

Terminate the algorithm.
Else

Update X0
2ðk;mÞ as in (40).

Go back to Step 1.
End if

−60°
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−10°

30°

2.15 cm
1.5 m

Fig. 6. Placement of microphones and sources. We evaluated two
combinations of source positions with the horizontal angles of [�501,
301] and [�601, �101].
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estimation in such a long observation, we propose the
iteration of these procedures to reduce the propagation of
the error in each stage to the next stage.

Table 2 summarizes the iterative optimization algo-
rithm. After the processing described in Sections 6.1–6.3,
we return to the procedure in Section 6.2 after the
following update of the STFT signal in the second channel
X0
2ðk;mÞ for the update of ϵ:

X0
2ðk;mÞ’X2ðk;ϕ21ðmÞÞ: ð40Þ

The procedures in Sections 6.2 and 6.3 after the update
given by (40) are repeated until the iteration reaches the
maximum number of iterations. The iterative algorithm is
summarized in Table 2. Note that such iteration is required
only for particularly long observations such as those for
10 min.

7. Experimental evaluation

In this section we evaluate the effectiveness of the
proposed method of blind drift compensation. First,
we evaluate the estimation accuracy of the sampling
frequency mismatch by the proposed method. Second,
we evaluate the performance of BSS with the drift com-
pensation to assess the suitability of the proposed drift
compensation as a preprocessing step in array signal
processing.

7.1. Experimental setup

The observed signals are two-channel recordings of
two-speaker mixtures made by the convolution of mea-
sured impulse responses and speech signals. The speech
signals are made by the concatenation of word utterances
chosen from the utterances in the ATR Japanese speech
database [19]. We evaluated all 12 combinations of two
speakers selected from two male and two female speakers.
The original sampling frequency of the observation was
16,000 kHz, and we modified the sampling frequency of
one channel by 70.5, 71, and 71.5 Hz. These modifica-
tions correspond to sampling frequency mismatches
of 731.25, 762.5, and 793.75 ppm (parts per minute,
10�6), respectively, which are realistic values for the
practical bias of clock generators in real ADCs. To generate
an artificial sampling frequency mismatch, we performed
resampling with a polyphase filter, which is implemented
as a standard command in MATLAB. We used auxiliary-
function-based independent vector analysis [20] to con-
duct two-channel BSS of the two speakers. The placements
of microphones and speakers are shown in Fig. 6. The
sources are placed 1.5 m apart from the middle of the two
microphones. We evaluated two different source positions,
and the combinations of the horizontal angles of the two
sources are [�501, 301] and [�601, �101]. Other condi-
tions are listed in Table 3.

7.2. Accuracy of sampling frequency mismatch estimation

Fig. 7 shows the root mean squared errors (RMSEs) of
the estimates of the sampling frequency mismatches for
different signal lengths. We plotted the results of one and
two iterations of the iterative estimation algorithm
described in Section 6.4. We can see that the proposed
estimation algorithm works appropriately even with short
observed signals, and the accuracy improves with increas-
ing length of the observed signals. Also we can see that the
iterative procedure performs better when the observation
is long, and the improved performance becomes clear for
observations longer than 120 s. Thus, we confirmed that
the estimation algorithm without iteration is satisfactory
for short observations, but the iterative estimation
algorithm is effective in the case of long observations.

7.3. Robustness

We analyzed the behavior of the proposed method of
sampling frequency mismatch estimation to evaluate
robustness. First, to evaluate the effect of the non-
Gaussianity of the observed signal, we analyzed the
kurtosis, which is a popular measure of Gaussianity. The
kurtosis of complex variables [21] was evaluated in each
frequency bin for each observation of 30 min, and the
results were averaged over all the observations. Note that
for the stability of estimation, the fourth-order moments
were not obtained from the sample average but from the
parameters of the gamma distributions fitted to the
absolute squared amplitudes by using maximum likeli-
hood estimators. The estimated kurtosis is shown in Fig. 8.



Table 3
Experimental conditions.

Length of observation 3, 5, 10, 20, 30, 60, 180, 300 and 1800 s
Reverberation time T60 of 130 ms
Frame length L 4096 samples
Frame shift R 2048 samples
Microphone spacing 2.15 cm
Discretization search range E 5� 10�4

Discretization division D 20
Resolution ρ of golden section search 10�13
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Fig. 7. Root mean squared errors (RMSEs) of estimates of sampling
frequency mismatch.
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quency mismatch under the existence of uncorrelated white noise.
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The kurtosis of complex variables with a complex normal
distribution is zero, and the kurtosis is larger than one
when the variables are super-Gaussian. Fig. 8 shows that in
most of the frequency bins the kurtosis is highly super-
Gaussian, which is a characteristic of speech. Since accu-
rate estimation was obtained for the super-Gaussian
observation, it is confirmed that the non-Gaussianity of
the observation does not affect the estimation.

To evaluate the robustness against noise, we super-
imposed uncorrelated white Gaussian noise on the obser-
vation and evaluated the RMSEs of the sampling frequency
mismatch estimation. We compared the accuracy with a
clean observation and noisy observations with SNRs of 20,
10, and 0 dB. The result is shown in Fig. 9. The RMSE
increases with increasing noise, but the RMSE is only
several times larger under a severe condition with an
SNR of 0 dB than that for the clean observation. Therefore,
it is confirmed that the proposed maximum likelihood
estimation method is robust against noise as discussed in
Section 4.3.

Since the proposed maximum likelihood estimation
method assumes that the sources do not move so that
the stationarity of the observation is maintained, the
movement of sources degrades the estimation perfor-
mance. To evaluate the effect of the movement of the
sources, we changed the positions of the speakers from the
directions [�501, 301] to [�601, �101] in the middle of the
observation. Fig. 10 shows the RMSEs of the sampling
frequency mismatch estimation when the speakers chan-
ged the positions. Although the estimation does not fail
under this condition, the RMSEs increased approximately
ten-fold. Thus, the proposed maximum likelihood estima-
tion is weak against position shifts of the sources because
of the degradation of stationarity.

7.4. Contribution to BSS

To assess the contribution of the proposed method of
drift compensation to BSS, we evaluated the source
separation performance in terms of the signal-to-
distortion ratio (SDR) [22] at the first microphone as
shown in Fig. 11. The SDRs were averaged for the two
sources. We evaluated the following conditions:



 10  100

R
M

S
E

Observation length [s]

Without position shift
With position shift

10-9

10-8

10-7

10-6

10-5

Fig. 10. Root mean squared errors (RMSEs) of estimated sampling
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Fig. 11. Signal-to-distortion ratios (SDRs) of BSS performances for differ-
ent conditions of drift compensation.
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�
 Synchronous: BSS without artificial sampling frequency
mismatch to obtain an upper limit for this task.
�
 Unprocessed: BSS without compensation of the asyn-
chronous recording.
�
 STFT-based resampling with true parameters (STFT):
BSS of the STFT-based resampling with the true value
of ϵ given and D21 estimated by the procedure in
Section 6.3.
�
 Maximum likelihood linear phase compensation (ML):
BSS of the STFT signal obtained by the procedure in
Section 4.2 without STFT-based resampling.
�
 Without offset reestimation (WO): BSS of the STFT-based
resampling without the reestimation of D21 obtained by
the procedure in Section 6.3.
�
 Proposed: BSS of STFT-based resampling with drift
compensation by the procedures in Section 6 without
iteration of the procedures. The number of iterations in
Section 6.4 was two.
Since the SDRs of the unprocessed signal are very low, we

Fig. 11 shows a comparison of the BSS performances.

can see that BSS is difficult without drift compensation
under these conditions. The SDRs in the case of resampling
with the true parameters are only 1 dB lower than those in
the case of synchronous recording. Thus, we can conclude
that the error of the signal expression in the STFT-based
resampling is insignificant in array signal processing. The
degradation in the SDRs of the maximum likelihood linear
phase compensation is considerable for observations
longer than 20 s compared with the other methods. Thus,
resampling is essential and the proposed STFT-based
resampling is satisfactory. The degradation in the SDRs of
the BSS without offset reestimation is also considerable for
observations longer than 30 s, but the proposed method
does not exhibit such degradation. Thus, the effectiveness
of the reestimation procedure for the offset described in
Section 6.3 is confirmed. The SDRs of the proposed method
exhibit insignificant degradation compared with STFT-
based resampling with the true parameters, and the
degradation from the synchronous recording was only
about 1 dB. Thus, it is confirmed that the parameter
estimation is sufficiently accurate. Therefore, the validity
of the proposed compensation algorithm is verified, and
its suitability for array signal processing as a process is also
confirmed.
8. Conclusion

In this paper, we proposed a novel method for the blind
compensation of drift arising in the asynchronous record-
ing of an ad hoc microphone array. We modeled the drift
as a shift of short time frames while ignoring the drift
inside each frame. Thus, the compensation of drift was
given by a linear phase in the STFT domain. By assuming
that the sources are unmoving and have stationary ampli-
tudes, we used stationarity as the cue to evaluate the drift
compensation. A likelihood function to measure stationar-
ity was formulated, and an efficient maximum likelihood
search of the sampling frequency mismatch by a golden
section search was described. We also proposed an effi-
cient resampling method involving the modification of
STFT analysis with a noninteger frame shift, and described
the algorithm of the introduced blind drift compensation.
In an experiment on the compensation of drift introduced
artificially, we confirmed the accurate estimation and
sufficient compensation of drift by the proposed method.
The future work includes the online adaptation of the drift
compensation.
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