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Abstract. In this paper, we propose a method to estimate a correlation
coefficient of two correlated complex signals on the condition that only the
amplitudes are observed and the phases are missing. Our proposed method
is based on a maximum likelihood estimation. We assume that the orig-
inal complex random variables are generated from a zero-mean bivariate
complex normal distribution. The likelihood of the correlation coefficient
is formulated as a bivariate Rayleigh distribution by marginalization over
the phases. Although the maximum likelihood estimator has no analyti-
cal form, an expectation-maximization (EM) algorithm can be formulated
by treating the phases as hidden variables. We evaluate the accuracy of
the estimation using artificial signal, and demonstrate the estimation of
narrow-band correlation of a two-channel audio signal.
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1 Introduction

Correlation of complex sequences plays an important role in array signal process-
ing and almost all of its application [1]. The estimation of correlation is easily
obtained by a simple product sum of the signal sequences. However, the correla-
tion estimation by the product sum cannot be used when the phase observation
is unreliable or unavailable. For example, in asynchronous distributed acoustic
sensing systems which gather signals observed by multiple independent record-
ing devices, the biases of the sampling frequencies of the individual devices cause
drift of the phases [2,3]. The effect of the drift on the amplitude is not serious,
but the phase is strongly affected [4]. Also, when we analyze the output of the
nonlinear signal processing in the amplitude domain, such as nonnegative matrix
factorization (NMF) [5], the phases are often missing. Although many phase esti-
mation methods are studied [6], the accurate estimation of the correlation cannot
be guaranteed.

The goal of this paper is to estimate a correlation coefficient of two complex
signal channels from the observation of amplitude without information of the
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phase. Since the correlation coefficient is expressed by a nonnegative number,
it cannot be used for estimation of phase difference, and the usage is some-
what limited. Still, the correlation coefficient gives important information, and
the correlation estimation from amplitude is useful for specific purposes. For
example, the estimation can be used to reduce the computational cost of the
maximum likelihood compensation of drift [3], which requires large computa-
tional power and memory. As discussed in [3], only the limited frequency bins
with high correlation contributes much to the observation, and estimation of
the correlation only from the amplitude is informative for the efficient analy-
sis discarding the useless frequency bins. Also, the correlation estimation from
amplitude is expected to be useful for evaluation of channel capacity [7], for the
estimation of SNR to optimize of the coefficients of the signal enhancement such
as SS or Wiener filter, and so on.

To estimate a correlation coefficient between two complex random variables
without phase observation, we propose a maximum likelihood estimation assum-
ing that the original complex variables are generated from a zero-mean bivariate
complex normal distribution. We show that the likelihood is given by the mar-
ginalization of the arguments, appearing as a bivariate Rayleigh distribution [7],
whose parameter estimation algorithm has not been derived to the best of our
knowledge. We derive an expectation-maximization (EM) algorithm to maximize
the likelihood of the bivariate Rayleigh distribution, and obtain the maximum
likelihood estimator of the correlation coefficient.

2 Statement of Problem

Suppose there are two correlated complex random variables X; € C, i = 1,2,

which have means of zero, variances 022, correlation p and the uniform arguments
©; as

E[Xi] =0, (1)

E|1xif] = o, (2)

E[X1X}] = o102p, (3)

fo, (91-):%, - <0; <m, (4)

where E [-] is the expectation operator, | - | is the absolute value, {-}" is the

complex conjugate, o? is the variance of X;, ©; = ZX;, Z{-} is the argument,
and f4(a) denotes the probability density of a random variable A whose sample
is denoted as a. Hereafter, we denote random variables and the samples with
upper and lower case letters, respectively.

Suppose the complex random variables X7, X5 are unavailable, but we can
observe their absolute values Y7, Ys:

Yi = [Xil. ()
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Our goal is to estimate the correlation coefficient |p|, the absolute value of
the cross correlation p between X; and Xy, under the condition that only the
absolute values are observed. It is obvious that the maximum likelihood esti-
mator of the variance o2 can be obtained as the average of the square of the
observation:

1 N
ot =B [IX] = 5 Yw )" (6)

where (n), n = 1,..., N denotes the index of the N observations. Note that
we omit the sample index (n) when the explicit declaration is unnecessary. In
contrast to the estimation of variance, the correlation coefficient |p| is different
from the correlation of the absolute observations:

0102 0102

Thus the following mean of the product of the observed absolute samples does
not give a good estimation:

1 N

N010'2

n=

ol — y1(n) y2 (n). (®)
1

Therefore, the estimation of the correlation coefficient with the absolute obser-
vation is not trivial.

3 Correlation Estimation Assuming Bivariate Complex
Normal Distribution

3.1 Probabilistic Model

In this section, we discuss the estimation of the correlation coefficient |p| from
the absolute samples y1, %2 assuming that the unobserved complex samples x
with the statistics given by (1)—(3) are generated from a zero-mean bivariate
complex normal distribution as

exp 7Ug\zl\2+o"f\$2|2720102Re[p*w1w;]
crfgg(lf\pp)
le,Xz (37171'2’/)) = 2 * (9)
20303 (1= |ol’)

Then, the joint density of the observation Y; and the unobserved argument
©1, 65 is expressed as

o2y2+02y2 —20103|p|y1ya cos(01—02—2Lp)
Yryz exp (‘ R (= prE)
Iyiva,01,0, (Y1,92,01,02;p) = . 5 ;
93 (1 — el )

252
meoq

(10)
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by applying the polar coordinate conversion to (9). By the marginalization of
the uniform distribution of the arguments @1, @, the likelihood of the absolute
observation Y7,Y5 is given as a bivariate Rayleigh distribution, which can be
found in many papers, e.g., [7] as a special case of multivariate Nakagami-m
distributions:

™ us
Iyi,ve (W1, y2; o)) :/ / Iyi.v,01,05 (1, 92,01, 02; p) dO1db2
—Tr —T
_ e 2|ply1y2 oxp [ - o3yt +oiy3
o303 (1-1p2)  \ 1oz (1= 1?) o303 (1~ 1n?)

where I, (-) denotes the modified Bessel function of the first kind with the order v.
It can be seen that the density of Y7 and Y5 depends on the correlation coefficient
|p| but not on the argument Zp of the correlation. Therefore, the maximization
of the likelihood gives the estimation of the correlation coefficient |p|. However,
the maximum likelihood estimator does not have the analytical form.

3.2 Maximum Likelihood Estimation by EM Algorithm

Here we describe the maximum likelihood estimation of the correlation coefficient
|p| by the iterative procedure. By treating the observed samples y;(n) and y2(n)
together with the unobserved arguments 6;(n) and 62(n), we can formulate the
EM algorithm. We treat the arguments ©1,0s as hidden variables, and the
posterior density of the hidden variables is given by

Ivi.Y2.01,0: (Y1, Y2, 01,02; p)
fo,.0,v1.v, (01,02]y1,y25 p) = =22
16211, Y2 thYz (ylayZ;p)

2|ply1yz cos(81 —02—ZLp)
_exp( 7122(1-17P) ) (12)

_ 2lplyrye
21l <0102(1p2)>

Then, the auxiliary function Q(|p|, |p|) to maximize in each iteration of the EM
algorithm is obtained as

N
Q(lel;ol) = Z <10g le,Yg,@l,Qg (y1 (n),y2 (n),01 (n),02(n); p)>@1(n),92(7l)\y1(n),yz(n);\ﬁl
n=1

72“)‘ N n n)A(n) — Nlo —1p? 13
0102<1_|p|2);y1<>y2<> (n) = Nlog (1= |o]?) , (13)

(9 @ape = | o Jaim (altic) g @ do, (14)
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where D(a) is the domain of the variable a, and A(n) is the posterior expectation
of cos(61(n) — 62(n) — Zp) with the current parameter estimation ||, given by

A(n) = {cos (01(n) = b2 = £0)) g, (n).02 (n) 2 (), 0> (m):15]

o102 (1 - |/3|2>
L(z) =1 (z)/Io (z) (16)

Since L(z) is a monotonically increasing function giving L(0) = 0 and lim,_,
L(z) = 1, A(n) acts as weighting in the update of the estimation of |p| in the
M-step:

1 N
ol = Fre Do v (M) 32 (M) A (). (a7)

By iterating the updates of E- and M-steps given by (15) and (17), respectively,
the estimation of |p| converges to a local optimal. Note that o} and o3 are
estimated by (6), which can also be derived as the maximization of the auxiliary
function, although the related terms are omitted in (13). Also note that L(x)
can be calculated by one-dimensional table lookup.

4 Experimental Results

4.1 Evaluation with Artificial Signal

To evaluate the performance of the proposed method, we conducted a numerical
simulation to estimate the correlation coefficients of artificial two-channel com-
plex signals generated from pseudorandom numbers. To show the baseline, we
also evaluated the performance of absolute correlation given by (8). In addition,
to show the upper limit with the ideal condition, we evaluated the standard
maximum likelihood estimation under the condition where the original complex
sequences is available, given by

1
p| — NU p (18)

E 1 ( 332
n=1

As the evaluation criterion, we calculated the root mean squared errors (RMSEs).
The correlated data are generated by the linear mixture of the two inde-
pendent pseudorandom numbers with the same variance. We controlled the cor-
relation by manipulating the linear mixture. To evaluate the robustness of the
proposed method against the mismatch of the Gaussian assumption, we also eval-
uated the artificial signals generated by super-Gaussian pseudorandom numbers.
The super-Gaussian data are generated from the circular generalized normal dis-
tribution [8], whose density of the random variables X, X5 is given by

m (_ (‘%‘)> ; (19)

2n€2T (2)
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where & > 0 is the scale parameter, ¢; > 0 is the shape parameter, and I'()
is a gamma function. The shape parameters are set as ¢; = 0.5 and ¢y = 0.8,
and scale parameters are adjusted to give the unit variance. With such shape
parameter setting, the sequences have super Gaussian property with long tail,
and their kurtosis, a well-used Gaussianity measure, are about 7.4 and 2.3. Note
that the kurtosis is changed after the mixing to give correlation.

We show an example of the estimation in Fig.1. For both Gaussian and
super-Gaussian data, the absolute correlation does not give accurate estima-
tion. Although the variance of the proposed method is slightly larger than the
estimation with arguments, the estimated correlation coefficients distribute near
the true correlation coefficients and the accuracy of the proposed method is
match better than the baseline. The estimation of the correlation coefficients of
super-Gaussian data tends to underestimate the correlation, but the RMSEs are
similar to the Gaussian case without the model mismatch. Thus it is confirmed
that the proposed method can effectively estimate the correlation coefficients of
the complex sequences without the observation of arguments.

To examine the effect of the bias and variances of the estimation, we eval-
uate RMSEs of various numbers of observed samples. The result is shown in
Fig. 2. Although the proposed method has larger variance than the ideal esti-
mation with phase, we can see that the estimation accuracy of the proposed
method improves according to the increase of the number of the samples when
the data is Gaussian. Thus the proposed method can estimate the correlation
of Gaussian data effectively with small bias. However, we can see the satura-
tion of the improvement of the accuracy under the condition mismatch with the
super-Gaussian data.

4.2 Demonstration with Audio Data

As a demonstration of the correlation coefficient estimation in practical signal
processing, we evaluated the estimation of the correlation coefficients of the
narrow band amplitudes of a two-channel audio signal.

We analyzed observation of speech mixture by an array of two microphones.
The data is chosen from the Underdetermined Test dataset of the Signal Sep-
aration Evaluation Campaign (SiSEC) [9], a benchmark of speech separation.
Utterances of four female speakers were recorded in a room whose reverberation
time Tgo is 250 ms. The spacing of the microphones was 1 m. The recorded data
was 10s long, sampled with the frequency of 16 kHz. The signal was analyzed
by short-time Fourier transform with the von Hann window of the length 1024
samples and the shift 128 samples. The number of the frames is 1258.

The estimated results are shown in Fig. 3. In contrast to the artificial signals,
the true correlation coefficients are unknown. Thus it should be noted that the
horizontal axis is not the true correlation coefficients but the estimated correla-
tion coefficients by the ideal estimation in (18) with the original complex signal
given. We can see that the proposed method is much better than the baseline.
Superiority of the proposed method holds for other frame lengths, which strongly
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Fig. 1. An example of the estimation results of correlation coefficients between two
artificial signals generated from (a) Gaussian and (b) super-Gaussian pseudorandom
numbers. The number of samples was 100 for each trial. The EM iteration number was
10. The RMSEs are about 0.42, 0.05 and 0.12 for the baseline, the ideal estimation and
the proposed method, respectively for the results in (a), and about 0.05, 0.37 and 0.12
for the results in (b).
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Fig.2. Root mean squared errors for the number of the samples N = 10,20, 50,
100, 200, 500, 1000, 2000, 5000, 10000. The RMSEs of each condition was calculated from
100 trials. The EM iteration number was set to 200.
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Fig. 3. Estimation results of narrow band correlation coefficients of a two-channel audio
signal. The EM iteration number was 10. The RMSEs from the ideal estimation are
about 0.28 and 0.20 for the baseline and the proposed method, respectively.

affects the correlation. However, the accuracy is not as good as that of the artifi-
cial signal. Thus, further analysis is required to improve the estimation accuracy
with the realistic signals.
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5 Conclusions

In this paper, we proposed an EM algorithm to obtain the maximum likelihood
estimation of the correlation coefficient of the two correlated complex random
variables only with the observation of the absolute values. Assuming that the
original complex data are generated from a zero-mean bivariate complex normal
distribution, we formulated the likelihood of the correlation coefficient. Although
the maximum likelihood estimator is not analytical, we formulated the EM algo-
rithm by treating the difference of the arguments as a hidden variable. We eval-
uated accuracy and the robustness against the model mismatch of the proposed
method by the simulation using artificial signals. Also, we demonstrated the
estimation of the narrow-band correlation coefficients of the two-channel audio
signal. It is confirmed that the proposed method is much more accurate than
the estimation with the correlation of the absolute values. However, estimation
of the real signal was worse than that of the artificial signal, and the further
analysis and improvement are required. Our future work includes the modified
maximum likelihood estimation with a non-Gaussian distribution.
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