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ABSTRACT 

One benefit brought by introducing digital technologies to controlling room acoustics 
seems that great many achievements of discrete mathematics, such as number theory and 
linear algebra, can straightforwardly be exploited as signal-processing programs for digital 
computers and digital signal processors. From this viewpoint, some applications of Bezout 
identities [1] to inverse filtering of room acoustics are mentioned.     
 
INTRODUCTION  

Consider a single-input single-output linear acoustic system shown in Fig. 1. G1(z) 
denotes the sound propagation path (room transfer function) from loudspeaker S1 to 
microphone M. In order to control sound observed by microphone M, inverse filtering of 
G1(z) seems easy and effective. This processing is performed by inverse filter H(z) given as 
follows. 

H(z) = z-d/G1(z) = 1/g1(z), 
where  
G1(z) = z-d g1(z),  
z-d: sound propagation delay from S1 to M, and   
g1(z): polynomial of degree “m,” which represents direct sound as well as 
reflective sounds.  

 
Since polynomial g1(z) is usually non-minimum phase [2-3], however, H(z) cannot be 

obtained as a causal filter.  
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Fig. 1 Inverse filtering for single-input single-output linear acoustic system. 
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APPLYING BEZOUT IDENTITIES TO INVERSE FILTERING  
Principle 

Causal inverse filtering may be performed in a two-input single-output system shown in 
Fig. 2, where the sound propagation path from loudspeaker S2 to microphone M is added to 
the previous system in Fig. 1. This processing is formalized as a following Bezout identity 
(multiple-input/output inverse-filtering theorem, MINT)[3-4]. 

 
H1(z)G1(z) + H2(z)G2(z) = z-d, 
H1(z)g1(z) + H2(z) zg2(z) = 1, 

 where  
 G2(z) = z-dg2(z), 
 z-d : sound propagation delay common to G1(z) and G2(z), and  
 g2(z) : polynomial of degree “n.”  
  

Inverse filter set {H1(z), H2(z)} exists if and only if polynomials g1(z) and g2(z) are 
co-prime (in other wards,  g1(z) and g2(z) have no common zero) . H1(z) and H2(z) are 
given as follows [5]. 
 

H1(z) = H1,min(z) + g2(z)Q(z) and H2(z) = H2,min(z) – g1(z)Q(z),  
 where 
 {H1,min(z), H2,min(z)}: minimum-degree unique solution-set given as       

deg H1,min(z) < deg g2(z) = n and deg H2,min(z) < deg g1(z) = m, and 
 Q(z): arbitrary polynomial.  
  

Note that as far as g1(z) and g2(z) are co-prime, causal inverse filtering will be performed 
through H1(z) and H2(z) even when g1(z) or g2(z) is non-minimum phase.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Calculation of inverse filter set 

Though matrix calculation may be exploited to obtain the minimum degree inverse filter 
set, {H1,min(z), H2,min(z)}, adaptive filtering sometimes shows better performance regarding 
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Fig. 2 Inverse filtering for two-input single-output linear acoustic system 
using a Bezout Identity. 
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calculation complexity as well as storage capacity. A schematic diagram of this 
filter-calculation, a Filtered-X algorithm [6], is shown in Fig. 3. Here, C1(z) and C2(z) 
respectively represent the replicas of sound propagation paths G1(z) and G2(z). Respective 
signals y1(k) and y2(k) (k: integer index) are produced though C1(z) and C2(z) from 
broadband audio signal x(k), and input to adaptive filters H1(z) and H2(z). Reference x(k-d) 
denotes the delayed version of x(k), which is synthesized by considering propagation delay 
z-d common to G1(z) and G2(z). Error e(k) for calculating adaptive filters H1(z) and H2(z) is 
defined as follows.  

 
e(k) = x(k-d) – {[H1(z)]y1(k) + [H2(z)]y2(k)}, 
e(k) = [1– {H1(z)g1(z) + H2(z) z-wg2(z)}]x(k).                

 
This relation is made equivalent to relation (2) when e(k) becomes zero. By defining the 

respective degrees of H1(z) and H2(z) as “n – 1” and “m – 1,” therefore, minimum degree 
inverse filter set {H1,min(z), H2,min(z)} may be obtained by using an adaptive algorithm 
minimizing the power of error e(k), such as LMS and RLS [7]. Loudspeakers S1 and S2 
emit sounds processed through convolver set {P1(z), P2(z)}, which is a copy of {H1,min(z), 
H2,min(z)}, so that precise inverse filtering may be performed at microphone M.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
IDENTIFICATION OF SOUND PROPAGATION PATHS  
Identification using two loudspeakers   

The principle described in the previous section can also be exploited to identify sound 
propagation paths G1(z) and G2(z) from loudspeakers S1 and S2 to microphone M as shown 

Fig. 3 Calculation of inverse filter set {H1(z), H2(z)}. 
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in Fig. 4 [8]. The respective output signals of convolvers P1(z) and P2(z), which are 
produced from broadband audio signal x(k), are fed to the loudspeakers as well as adaptive 
filters H1(z) and H2(z). Sound r(k) observed with the microphone can be denoted as 
follows. 

r(k) = [P1(z)G1(z) + P2(z)G2(z)]x(k), 
r(k) = [P1(z)g1(z) + P2(z)g2(z)]x(k)= [R(z)]x(k). 

  
Summation o(k) of the signals output from H1(z) and H2(z) can also be denoted as follows. 

 
o(k) = [P1(z)H1(z) + P2(z)H2(z)]x(k). 

 
Here, if solution set {H1(z), H2(z)} that satisfies the following relation can uniquely be 
determined, the solution set will obviously be equivalent to set of sound propagation paths 
{g1(z), g2(z)}.  

R(z) = P1(z)H1(z) + P2(z)H2(z). 
 

The strategies for uniquely determining {H1(z), H2(z)} are summarized as follows.  
 

s-1: Convolvers P1(z) and P2(z) should not have any common zero.  
s-2: Respective degrees of P1(z) and P2(z) should be given as follows. 

deg P1(z) > deg H2(z) > deg g2(z) and  
deg P2(z) > deg H1(z) > deg g1(z), or 
deg P1(z) = deg P2(z) = L + 1 and deg H1(z) = deg H2(z) = L, 
where L = max (deg g1(z), deg g2(z)). 

 

Fig.4 Identification of sound propagation paths G1(z) and G2(z). 
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By using P1(z) and P2(z) designed along these strategies, and minimizing the power of error 
e(k) given by the following relation, {H1(z), H2(z)} will converge to {g1(z), g2(z)}.  
 

e(k) = r(k) – o(k). 
 
Blind identification using two microphones  

Linear prediction methods combined with Bezout idenities [9-10] may achieve blind 
identification of the sound propagation paths between sound sources and microphones. 
Consider a single-input two-output linear acoustic system shown in Fig. 5. Broadband 
audio signals are emitted from sound source S to microphones M1 and M2 through 
unknown sound propagation paths G1(z) and G2(z). Their maximum degree, max (deg g1(z), 
deg g2(z)), is only assumed to be known. Adaptive filters H1(z) and H2(z) are calculated by 
using the delayed versions of the respective microphone output-signals, y1(k-1) and y2(k-1), 
so as to minimize the power of error e(k) given as follows.  

 
e(k) = y1(k) – {[H1(z)]y1(k-1) + [H2(z)]y2(k-1)}, 

e(k) = [g1(z)]u(k) – [g1(z)H1(z) + g2(z)H2(z)]u(k-1), 
e(k) = g1,0 u(k) + [g1,rest(z) – {g1(z)H1(z) + g2(z)H2(z)}]u(k-1), 

 where  
 yi(k) = [Gi(z)]u(k)      yi(k) = [gi(z)]u(k) (i = 1 or 2), and   

g1(z) = g1,0 + z-1g1,rest(z).  
 

 
  
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

Suppose the following relationship. 
 

u(k) = F(z)u(k-1) + eu(k), 
 where  
 F(z): forward linear prediction filter whose degree satisfies;  

Fig.5 Blind identification of sound propagation paths G1(z) and G2(z) 
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      deg F(z) < deg {g1(z)H1(z) + g2(z)H2(z)}, and 
 eu(k): non-zero prediction error that satisfies the relation; 
      E[eu(k)u(k)] =E[ | eu(k) |2],  
      where E[*] denotes the expectation of *. 

 
Hence, Eq. (9) can be rewritten as follows. 

 
e(k) = g1,0 {F(z) u(k-1)+eu(k)}+[g1,rest(z) –{g1(z)H1(z)+g2(z)H2(z)}]u(k-1), 

e(k) = [{g1,0 F(z)+g1,rest(z)}–{g1(z)H1(z)+g2(z)H2(z)}]u(k-1)+g1,0 eu(k)}. 
 

By minimizing the power of e(k), prediction error g1,0 eu(k) will be obtained. Sound 
propagation paths g1(z) and g1(z) can be estimated up to factor g1,0/| g1,0 |2, therefore, from 
simple cross-correlation calculations as follows. 
  

E[g1,0 eu(k)y1(k)] / E[ |g1,0 eu(k)|2] = g1,0[g 1(z)]E[ |eu(k) |2]/{|g1,0 |2E[ |eu(k) |2]} 
= (g1,0/| g1,0 |2)g1(z), and 

E[g1,0 eu(k)y2(k)] / E[ |g1,0 eu(k)|2] = g1,0[g 2(z)]E[ |eu(k) |2]/{|g1,0 |2E[ |eu(k) |2]} 
= (g1,0/| g1,0 |2)g2(z). 

 
Though these estimated paths are still ambiguous in their amplitudes, this 

incompleteness will not cause any difficulty to some needs such as de-reverberation on 
audio signals received by microphones M1 and M2.   
 
SUMMARY 

Some applications of Bezout Identities to inverse filtering are mentioned as successful 
and promising examples of digital technologies exploited in controlling room acoustics.   
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