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1. Introduction

This paper deals with single-channel speaker-dependent
speech separation. Speech separation is a technique to sep-
arate out the signal of each speaker from a mixture signal
of multiple speakers and can be used to improve the accu-
racy of speech recognition and the quality of voice com-
munication. A discriminative approach using deep neu-
ral network (DNN) has recently proved powerful in single-
channel source separation tasks [1–4]. The general idea is
to train a DNN that predicts TF masks or TF embeddings
from a given mixture signal based on spectro-temporal fea-
tures. Recently, methods to train a DNN that directly pre-
dicts the waveform of each speaker has also been proposed.
Although these methods can achieve reasonably good sep-
aration, they can fail to work if there is a large mismatch
between training and test conditions caused by, for exam-
ple, reverberation.

Meanwhile, a generative approach, including the non-
negative matrix factorization (NMF) method [5], is attrac-
tive in its flexibility in addressing the mismatch between
training and test conditions. For example, this can be
achieved by explicitly incorporating the generative process
that causes the mismatch into the generative model of ob-
served signals, and simultaneously estimating the parame-
ters of the entire model during test time. The idea of the
NMF method is to approximate the spectrum of a mixture
signal observed at each short-term frame as a linear sum of a
limited number of basis spectra scaled by time-varying am-
plitudes. In the supervised NMF (SNMF) method [6], sepa-
ration is achieved by fitting the basis spectra, pretrained on
each source, to an observed mixture signal and then apply-
ing a Wiener filter. However, one problem with the SNMF
method is that the training criterion for the basis spectra is
inconsistent with the objective function at test time. In other
words, the basis spectra are not trained so that the sepa-
rated signals at test time become optimal. The discrimina-
tive NMF (DNMF) method [7] was later proposed to solve
this inconsistency. Specifically, the idea is to make the train-
ing scenario consistent with the test scenario, and train the
basis spectra so that the separated signals (the outputs of the
Wiener filters) directly become optimal. While these NMF-
based methods work reasonably well for particular types of
sound sources, one limitation is that they can fail to work
for sources with spectrograms that do not comply with the
NMF model.

In recent years, with the aim of modeling source spec-
trograms more flexibly than the NMF model, generative
approach-based methods using DNNs have been proposed
[8–16]. For multichannel source separation in a determined
condition, a method that uses the conditional variational au-
toencoder (CVAE) [17] for source spectrogram modeling,
called the multichannel VAE (MVAE) method, has been
proposed. This method has been shown to significantly
outperform independent low-rank matrix analysis [18, 19],
which uses the NMF model for spectrogram modeling. This
indicates that CVAE is better than the NMF model at ex-
pressing the spectrogram of each source and correctly dis-
criminating the spectrogram of one source from that of an-

other. With the same motivation, a monaural speech en-
hancement method (VAE-NMF method) [13, 14] and its
multi-channel extension [15, 16] have also been proposed.

Motivated by the success of the MVAE method, we pro-
pose in this paper a VAE-based monaural source separa-
tion (VASS) method using a CVAE for source spectrogram
modeling. We further propose a discriminative counter-
part of the VASS method, called the discriminative VASS
(DVASS) method, namely an extension to the VASS method
equivalent to the extension from the SNMF method to the
DNMF method.

2. Conventional methods

2.1 Problem formulation

We consider a situation where a mixture of the signals of

J speakers is observed. Let Y = {y(f, n)}f,n ∈ C
F×N ,

Sj = {sj(f, n)}f,n ∈ C
F×N be the complex spectrograms

of the observed signal and the signal of the jth speaker,
where f and n are the frequency and time indices, respec-
tively. Let us now assume that sj(f, n) independently fol-
lows a zero-mean complex Gaussian distribution with vari-
ance vj(f, n) = E[|sj(f, n)|

2]
sj(f, n) ∼ NC(sj(f, n) | 0, vj(f, n)). (1)

(1) is called the local Gaussian model (LGM) [20, 21].
When Sj and Sj′ (j = j′) are independent, from Y =
∑

j Sj y(f, n), we can show that y(f, n) follows

y(f, n) ∼ NC(y(f, n) | 0, v(f, n)), (2)

where v(f, n) =
∑

j vj(f, n). when Vj = {vj(f, n)}f,n,

the negative log-likelihood − log p(Y|V) of V =
{V1, . . . ,VJ} given Y is equivalent up to a constant term

to the IS divergence between ỹ(f, n) = |y(f, n)|2 and
v(f, n)

DIS(Ỹ|V) =
∑

f,n

(
ỹ(f, n)

v(f, n)
− log

ỹ(f, n)

v(f, n)
− 1

)

, (3)

where Ỹ = {ỹ(f, n)}f,n. Since Y and S1, . . . ,SJ are
jointly Gaussian, the minimum mean square error estima-
tor of Sj given Y and V1, . . . ,VJ is given by

E[Sj |Y] =
Vj

∑

j′ Vj′
⊙Y, (4)

where ·
· and ⊙ denote elementwise multiplication and di-

vision. Note that the multiplicative factor of (4) is called
the Wiener mask. (4) implies that once V1, . . . ,VJ is es-
timated, we can estimate the signal of each speaker. Thus,
the single-channel speech separation problem can be formu-
lated as the problem of estimating V1, . . . ,VJ with (3) as
the objective function, under some constraint or assumption
imposed on V1, . . . ,VJ .

2.2 SNMF method

The SNMF method is a monaural speech separation
method that uses the NMF model to express Vj . Namely,
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Vj is represented as the product of two non-negative ma-

trices WjHj , i.e., vj(f, n) =
∑

k wj,k(f). Here, the ba-
sis matrix Wj is assumed to be trained prior to separation
using the training utterances of each speaker. Represent-
ing the spectrogram as the product of two non-negative ma-
trices (a low-rank matrix) corresponds to representing the
spectra observed at each frame as a non-negative combi-
nation of a finite number of basis spectra. Therefore, we
can expect to obtain basis spectra unique to each speaker
through the pretraining of Wj . At test time, after fitting
WH to the spectrogram of a test mixture signal Y with
W = [W1, . . . ,WJ ] fixed at the pretrained basis spec-
tra, V1, . . . ,VJ can be estimated using the estimate of

H = [HT

1 , . . . ,H
T

J ]
T. The source signals can then be sepa-

rated out using (4). A common way to train Wj is to solve

{Ŵj , Ĥj} = argmin
Wj ,Hj

D(S̃
′

j |WjHj), (5)

where S̃
′

j is a concatenation of the power spectrograms of

all training utterances of speaker j. D is a cost function that

measures the dissimilarity of S̃
′

j and WjHj , such as the IS

divergence. At test time, given the power spectrogram Ỹ of
the mixture signal, we must solve

Ĥ = argmin
H

D(Ỹ|ŴH), (6)

where Ŵ = [Ŵ1, . . . ,ŴJ ] denotes the basis matrix con-

taining the pretrained basis spectra. ŴjĤj corresponds
to the estimate of the power spectrogram associated with

speaker j. The complex spectrogram Ŝj of speaker j can
then be obtained as

Ŝj =
ŴjĤj

∑

j′ Ŵj′Ĥj′
⊙Y. (7)

2.3 DNMF method

If we assume using the Wiener filter output (7) to obtain
the signal of each speaker, the training and test objectives
become inconsistent. Namely, the basis spectra are not nec-
essarily trained in such a way that the separated signals at
test time will be optimal. The DNMF method has been de-
veloped to address this inconsistency in the SNMF method,
based on the idea of training the basis spectra in such a way
that the separated signals become optimal at test time.

With the SNMF method, at test time, the basis matrix Ŵ

is used not only for estimating Ĥ from Ỹ in (6) but also for
constructing the Wiener filter in (7). However, the basis ma-
trices used in these steps do not necessarily have to be the
same; rather, it would be more advantageous at test time to
treat them as different variables and train them separately.
We thus use W and B to denote the basis matrices at these
steps, and discuss what criteria should be used to train them.

By using the power spectrogram Ỹ
′
= {|y′(f, n)|2}f,n of a

random mixture of training utterances as the input and that
of each of the utterances as the regression target, we can
train W and B based on the process that exactly mimics
the test scenario. After solving (6) by using the basis ma-

trix Ŵ obtained via (5), we can train B so that the output
of (7) matches the regression target as closely as possible.
Therefore, in the DNMF method, the training objective for
B can be defined as

B̂ = argmin
B

∑

j

D

(

|S′
j |

∣
∣
∣
∣
∣

BjĤj

BĤ
⊙ |Y′|

)

, (8)

where |Y′| and |S′
1|, . . . , |S

′
J | denote the magnitude spec-

trograms of the mixture signal and the source signals, re-
spectively. Note that here | · | is used to denote an operation
of taking the elementwise absolute value of a matrix. At

test time, the separated signals can be obtained by the same

process as (6) and (7) using Ŵ trained via (5) and B̂ trained
via (8).

Both the SNMF and DNMF methods assume that the
spectrogram of each speech spectrogram can be represented
by a low-rank matrix. However, this assumption is not al-
ways accurate, and it limits the separation performance of
both methods.

3. Proposed methods

3.1 CVAE Source Model

Since the matrix product representation Wh can be re-
garded as a single-layer linear fully-connected NN with h

as the input, a deeper model with multiple nonlinear lay-
ers can be a more powerful alternative to the NMF model.
One idea would be to express the variance vj(f, n) in the
LGM (1) as the output of a DNN. As described below,
this corresponds to a special case of a VAE. The MVAE
method, mentioned earlier, is a multichannel source sepa-
ration method that uses a CVAE, conditioned on a speaker
code, as the source spectrogram model based on this idea.
This model is called the CVAE source model. This paper
proposes a single-channel speech separation method based
on the CVAE source model.

A CVAE is a type of autoencoder consisting of an en-
coder and decoder. It is unique in that both the encoder and
decoder are modeled in the form of parametric probabil-
ity distributions, and both distributions are conditioned on
auxiliary variables. Let S be the complex spectrogram of
a particular speaker’s utterance and c be the speaker code.
Here, we assume that the speaker code c is represented a
one-hot vector. Now, we condition the decoder distribution
on c and further define it as a zero-mean complex Gaussian
distribution so that it has the same form as the LGM (1):

pθ(S|z, c, η) =
∏

f,n

NC(s(f, n)|0, v(f, n)), (9)

v(f, n) = η · σ2
θ(f, n; z, c), (10)

where σ2
θ(f, n; z, c) denotes the (f, n)th element of the de-

coder network output σ2
θ(z, c), z represents a latent variable

generated from the encoder distribution, and η is a parame-
ter corresponding to the scale (total energy) of S. Next, we
define the encoder distribution as a Gaussian distribution
with diagonal covariance:

qφ(z|S, c) = N (z|µφ(S, c), diag(σ
2
φ(S, c))), (11)

and define the prior distribution p(z) as a standard Gaus-
sian distribution. Here, the mean µφ(S, c) and variance

σ
2
φ(S, c) are assumed to be the encoder network out-

puts. All the unknown network parameters θ and φ are
trained using a set of speaker-labeled training samples

{Sm, cm}Mm=1. The goal is to train θ and φ so that the en-
coder distribution qφ(z|S, c) becomes consistent with the

posterior pθ(z|S, c) ∝ pθ(S|z, c)p(z). The decoder distri-
bution with the resulting θ is expected to fit the true dis-
tribution of the spectrograms of each speaker reasonably
well. If we define the training objective as the Kullback-
Leibler (KL) divergence between qφ(z|S, c) and pθ(z|S, c),
the training objective is equal up to a constant term to

J (φ, θ) = E(S,c)∼pD(S,c)

[
KL[qφ(z|S, c)||p(z)]

− Ez∼qφ(z|S,c)[log pθ(S|z, c)]
]
, (12)

where E(S,c)∼pD(S,c)[·] denotes the sample mean over the

training examples {Sm, cm}Mm=1, and KL[·||·] denotes the
KL divergence. Thus, minimizing (12) amounts to distribu-
tion fitting. It should be noted that the second term in (12)
is equal up to a constant term to the expectation of the IS di-

vergence between Ŝ = {|s(f, n)|2}f,n and v(f, n), owing
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to the decoder distribution defined in the same form as the
LGM.

In the CVAE source model, the latent variable z can be
interpreted as context information corresponding to the lin-
guistic content of S, and the decoder NN parameter θ as
the quantity that governs the mapping from the context in-
formation to the spectrogram. In this respect, z and θ can
be regarded as corresponding to the coefficient (activation)
matrix H and basis matrix W in the NMF model, respec-
tively.

3.2 Proposed1: VASS Method

The VASS method corresponds to the SNMF method in
which the NMF-type source model is replaced by the CVAE
source model. Like the SNMF method, the VASS method
consists of pretraining the source model (training step), fit-
ting the source model to the spectrogram of an observed
mixture signal (test step 1), and extracting source signals
using the Wiener mask (test step 2). Thanks to the condi-
tional modeling, the CVAE source model with a single set
of parameters can be made to represent the spectrograms of
all speakers in the training set by training the parameters

using (12) as the objective. Let θ̂ be the parameters of the
CVAE source model obtained after the training step. The
first step at test time (test step 1) can be formulated as a
maximum likelihood estimation problem

{Ẑ, Ĉ, η̂} = argmax
Z,C,η

log p(Y|Z,C,η), (13)

where the likelihood function p(Y|Z,C,η) can be de-
rived based on the assumption that the complex spectrogram
y(f, n) of a mixture signal follows

y(f, n) ∼NC(y(f, n)|0, v(f, n)) (14)

v(f, n) =
∑

j

vj(f, n)
︸ ︷︷ ︸

ηjσ
2

θ̂
(f,n;zj ,cj)

. (15)

As mentioned in subsection 2.1, − log p(Y|Z,C,η) is
equal up to a constant term to the IS divergence between
|y(f, n)|2 and v(f, n). Hence, this problem is equivalent to

finding Z, C, and η that minimize DIS(Ỹ|V) with θ̂ fixed,

where Ỹ = {|y(f, n)|2}f,n. Once Ẑ, Ĉ, and η̂ are esti-
mated, the signal of each speaker can be obtained by the
Wiener filter (test step 2)

Sj =
ηjσ

2
θ̂
(ẑj , ĉj)

∑

j′ ηj′σ
2
θ̂
(ẑj′ , ĉj′)

⊙Y. (16)

Note that there are several possible ways to solve
(13). The first is to simply optimize Z, C, η using the
gradient method (back propagation for Z and C) with

log p(Y|Z,C,η) or DIS(Ỹ|V) as the criterion. The sec-
ond method is to optimize them using the Expectation-
Maximization (EM) algorithm, treating the complex spec-
trogram sj(f, n) of each speaker as the latent variable.

We can keep increasing the log-likelihood log p(Y|Z,C,η)
by iteratively increasing an auxiliary function defined as
ES∼p(S|Y,Z′,C′,η′)[log p(S|Z,C,η)] through iterative up-

dates called the E- and M-steps. The M-step is a process of
updating Z, C, η so that the auxiliary function increases.
Z and C can be updated by backpropagation. When Z

and C are fixed, η that maximizes the auxiliary function
can be derived analytically. The E-Step is a process of re-
computing the auxiliary function each time Z, C, and η

are updated, by substituting the updated Z, C, and η into

Z
′, C′, and η

′. Since log p(S|Z,C,η) is split in J indi-
vidual terms, namely

∑

j

∑

f,n log p(sj(f, n)|0, vj(f, n)),

(z1, c1,η1), . . . , (zJ , cJ ,ηJ) can be updated in paral-
lel at the M-step. The third method is to increase
log p(Y|Z,C,η) iteratively by using another form of an

auxiliary function as in [12]. Owing to space limitations,
the details and derivations of the algorithms for these three
methods are omitted. In the experiments described below,
we used the method based on the EM algorithm.

3.3 Proposed2: DVASS Method

In the VASS method, as in the SNMF method, the train-
ing objective for the parameter θ of the CVAE source model
does not make the separated signals (Wiener filter outputs)
optimal at test time. To address this mismatch between
the training and test objectives, we further propose improv-
ing the VASS method by following the idea of the DNMF
method. Recall that the idea of the DNMF method was
to treat the basis matrix responsible for obtaining the co-
efficient matrix and that responsible for constructing the
Wiener filter as separate variables. In the same manner,
we treat the CVAE source model parameters responsible
for obtaining (13) and those responsible for constructing
the Wiener filter as separate variables, and denote them by
θ and ϑ, respectively. As in the DNMF method, we can
train these parameters by following the process that exactly

mimics the speech separation process at test time. Let Ẑ,

Ĉ, and η̂ represent the values obtained by (13), with θ̂ fixed

at the value obtained by (12). By using Ẑ, Ĉ, and η̂, we can
train ϑ so that the output of (16) matches the target signal
as closely as possible. The training objective can be defined
as

ϑ̂ = argmin
ϑ

∑

j

D

(

|S′
j |

∣
∣
∣
∣
∣

ηjσ
2
ϑ(ẑj , ĉj)∑

j′ ηj′σ
2
ϑ(ẑj′ , ĉj′)

⊙ |Y′|

)

.

(17)

At test time, the separated signals can be obtained by per-
forming (13) and (16) using the trained θ and ϑ. An
overview of the DVASS method is shown in Fig. 1 where
the criterion for (17) is denoted as Jre(ϑ).

4. Experimental evaluations

The proposed method was evaluated on a single-channel
speech separation task of separating out two speakers. We
chose the SNMF and DC [1] methods as baseline methods
for comparison. As the experimental data, we used speech
samples of the CMU ARCTIC database [22]. We used a
set of the utterances of two female (’clb’ and ’slt’) and two
male (’bdl’ and ’rms’) speakers. For each speaker, we used
1000 utterances for training, and 132 utterances for testing.
We generated 81 speech mixtures for three speaker combi-
nations: bdl+clb, bdl+rms, and clb+slt. Each test mixture
signal was generated so that the energy of each speaker is

equal. 560 mixture signals Y′ used for training ϑ were gen-
erated in the same manner. All the speech signals were re-
sampled at 8 [kHz] and STFT analysis was conducted with
512 [ms] frame length and 256 [ms] hop length. In the
VASS method, we used a three-layer fully-convolutional
network with gated linear units and a three-layer fully-
deconvolutional network with gated linear units as the en-
coder and decoder networks in the CVAE model, as in [8].
In the DVASS method, we used the same network architec-
tures for the encoder and decoder. We used Adam [23] for
NN training and updating the model parameters z and c.
In the VASS and DVASS methods, the initial separated sig-
nals were obtained using the SNMF method that was run for
100 iterations, and z was initialized by feeding the initially
separated signals into the encoder. For each paired training
sample (S, c), we fixed c at an one-hot vector correspond-
ing to the speaker of S. The VASS and DVASS methods
were run for two iterations. In the SNMF method, the num-
ber of bases was set to 10 for each source, and the KL diver-
gence criterion was used as D. As the evaluation metrics,
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Figure 1: Schematic overview of DVASS. Figure 2: Averaged separation performances [dB].

we used the scale-invariant signal-to-distortion ratio (SDR),
the scale-invariant signal-to-inference ratio (SIR), and the
scale-invariant signal-to-artifact ratio (SAR) [24] between
the reference and separated signals.

The experimental results are shown in Fig.2. Com-
pared with the baseline SNMF method, the high separa-
tion performance of the proposed VASS method was con-
firmed. The performance difference between the SNMF
and VASS methods may reflect the difference in the ability
of each source model to achieve separation. The DVASS
method showed higher separation performance than the
VASS method in all metrics. This confirms the effectiveness
of discriminative training. However, we also confirmed that
the DVASS method still had room for improvement up to
the high separation performance of the DC method.

5. Conclusion

In this paper, we proposed the VASS method as a single-
channel speech separation method using the CVAE source
model, and also proposed the DVASS method which trains
the CVAE source model based on a discriminative criterion.
The effectiveness of the proposed method was investigated
through specific two-speaker separation experiments. The
experimental evaluation showed that both the VASS and
DVASS methods performed better than the SNMF method,
and the DVASS method performed better than the VASS
method.
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