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Abstract This paper introduces the blind source separation (BSS) of convolutive mixtures of acoustic signals,
especially speech. A statistical and computational technique, called independent component analysis (ICA), is ex-
amined. By achieving nonlinear decorrelation, nonstationary decorrelation, or time-delayed decorrelation, we can
find source signals only from observed mixed signals. Particular attention is paid to the physical interpretation of
BSS from the acoustical signal processing point of view. Frequency-domain BSS is shown to be equivalent to two
sets of frequency domain adaptive microphone arrays, i.e., adaptive beamformers (ABFs). Although BSS can reduce
reverberant sounds to some extent in the same way as ABF, it mainly removes the sounds from the jammer direction.
This is why BSS has difficulties with long reverberation in the real world. If sources are not “independent,” the
dependence results in bias noise when obtaining the correct unmixing filter coefficients. Therefore, the performance
of BSS is limited by that of ABF. Although BSS is upper bounded by ABF, BSS has a strong advantage over ABF.
BSS can be regarded as an intelligent version of ABF in the sense that it can adapt without any information on the
array manifold or the target direction, and sources can be simultaneously active in BSS.
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& is to provide computers with this cocktail party ability, thus
1. Introduction = )
making it possible for computers to understand what a per-

Speech recognition is a fundamental technology for com-
munication with computers, but with existing computers,
the recognition rate drops rapidly when more than one per-
son is speaking or when there is background noise. On the
other hand, humans can engage in comprehensible conver-
sations at a noisy cocktail party. This is the well known
cocktail-party effect, where the individual speech waveforms

are found from the mixtures. The aim of source separation

son is saying at a noisy cocktail party.

Blind source separation (BSS) is an emerging technique,
which enables the extraction of target speech from observed
mixed speeches without the need for source positioning, spec-
tral construction, or a mixing system. To achieve this, atten-
tion has focused on a method based on independent compo-
nent analysis (ICA). ICA extracts independent sounds from

among mixed sounds. This paper considers ICA in a wide
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sense, namely nonlinear decorrelation together with nonsta-
tionary decorrelation and time-delayed decorrelation. These
three methods are discussed in a unified manner [2]. There
are a number of applications for the BSS of mixed speech
signals in the real world [3], but the separation performance
is still not good enough [4], [5].

Since ICA is a purely statistical process, the separation
mechanism has not been clearly understood in the sense of
acoustic signal processing, and it has been difficult to know
which components were separated, and to what degree. Re-
cently, the ICA method has been investigated in detail, and
its mechanisms have been gradually uncovered by using the-
oretical analysis from the perspective of acoustic signal pro-
cessing [6] as well as experimental analysis based on impulse
response [7]. The mechanism of BSS based on ICA has been
shown to be equivalent to that of an adaptive microphone
array system, ie., N sets of adaptive beamformers (ABFs)
with an adaptive null directivity aimed in the direction of
unnecessary sounds.

From the equivalence between BSS and ABF, it becomes
clear that the physical behavior of BSS reduces the jammer
signal by making a spatial null towards the jammer. BSS
can further be regarded as an intelligent version of ABF in
the sense that it can adapt without any information on the

source positions or period of source existence/absence.
2. What Is BSS?

Blind source separation (BSS) is an approach for estimat-
ing source signals s;(n) using only the information of mixed
signals z;(n) observed at each input channel. Typical ex-
amples of such source signals include mixtures of simulta-
neous speech signals that have been picked up by several
microphones, brain waves recorded by multiple sensors, and
interfering radio signals arriving at a mobile station.

2.1 Mixed Signal Model for Speech Signals in a

Room

In the case of audio source separation, several sensor micro-
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phones are placed in different positions so that each records
a mixture of the original source signals at a slightly different
time and level. In the real world where the source signals
are speech and the mixing system is a room, the signals
that are picked up by the microphones are affected by re-
verberation (8], [9]. Therefore, the N signals recorded by M

microphones are modeled as

N P
zi(n) =Y ha@sin—p+1) (G=1,M), (1)
i=1 p=1
where s; is the source signal from a source i, z; is the signal
received by a microphone j, and hj; is the P-taps impulse
response from source i to microphone j.

This paper focuses on speech signals as sources that are
nongaussian, nonstationary, colored, and that have a zero
mean.

2.2 Unmixed Signal Model

To obtain unmixed signals, unmixing filters w;;(k) of Q-
taps are estimated, and the unmixed signals are obtained

as

M Q
wn) =Y > wis(g)zs(n—g+1) (i=1,-,N). (2)
j=1 g=1
The unmixing filters are estimated so that the unmixed
signals become mutually independent. This paper consid-
ers a two-input, two-output convolutive BSS problem, i.e.,
N = M = 2 (Fig. 1) without a loss of generality.
2.3 Task of Blind Source Separation of Speech
Signals
It is assumed that the source signals s; and sz are mutu-
ally independent. This assumption usually holds for sounds
in the real world. There are two microphones which pick up
the mixed speech. Only the observed signals z; and z2 are
available and they are dependent. The goal is to adapt the
unmixing systems w;;, and extract y1 and y» so that they are
mutually independent. With this operation, we can obtain
s1 and sz in the output 31 and y2. No information is needed

on the source positions or period of source existence/absence.



Nor is any information required on the mixing systems hj;.
Thus, this task is called blind source separation (Fig. 2).

Note that the unmixing systems w;; can at best be ob-
tained up to a scaling and a permutation, and thus cannot
itself solve the dereverberation/deconvolution problem [10].

2.4 Instantaneous Mixtures vs. Convolutive Mix-

tures

2.4.1 Convolutive Mixtures.

If the sound separation is being undertaken in a room,
the mixing systems h;; are of course FIR filters with several
thousand taps. This is the very difficult and relatively new
problem of convolutive mixtures.

2.4.2 Instantaneous Mixtures

By contrast, if the mixing systems hj; are scalars, i.e.,
there is no delay and no reverberation, such as when we use
an audio mixer, this becomes a problem of instantaneous
mixtures.

In fact, other applications such as the fMRI and EEG sig-
nals found in biomedical contexts, and images are almost all
instantaneous mixtures problems. Instantaneous mixtures
problems have been well studied and there are many good
results.

2.5 Time-Domain Approach vs. Frequency-

Domain Approach

Several methods have been proposed for achieving the
BSS of convolutive mixtures. Some approaches consider the
impulse responses of a room hj; as FIR filters, and esti-
mate those filters in the time domain [11], [12], [13]; other ap-
proaches transform the problem into the frequency domain
so that they can simultaneously solve an instantaneous BSS
problem for every frequency [14], [15].

2.6 Time-Domain Approach for Convolutive Mix-

tures

In the time-domain approach for convolutive mixtures, un-
mixing systems w;; can be FIR filters or IIR filters. However,
FIR filters are usually used to realize a non-minimum-phase
filter [11].

In the BSS of convolutive mixtures in the time domain, Sun
and Douglas clearly distinguished multichannel blind decon-
volution from convolutive blind source separation[13].

Multichannel blind deconvolution tries to make the output
both spatially and temporally independent. The sources are
assumed to be temporally as well as spatially independent,
i.e., they are assumed to be independent from channel to
channel and from sample to sample. On the other hand, con-
volutive BSS tries to make the output spatially (mutually)
independent without deconvolution. Since speech is tempo-
rally correlated, convolutive BSS is appropriate for the task
of speech separation. If we apply multichannel blind decon-
volution to speech, it imposes undesirable constraints on the

output, causing undesirable spectral equalization, flattening,

or whitening. Therefore, we need some pre/post-filtering
method that maintains the spectral content of the original
speech in the separated output [13], [16].

An advantage of the time-domain approach is that we do
not have to think about the heavy permutation problem, i.e.,
the estimated source signal components are recovered with a
different order. Permutation poses a serious problem in rela-
tion to frequency-domain BSS, whereas it is a trivial problem
in time-domain BSS.

A disadvantage of the time-domain approach is that the
performance depends strongly on the initial value [11], [16].

2.7 Frequency-Domain Approach for Convolutive

Mixtures

Smaragdis [14] proposed working directly in the frequency
domain applying a nonlinear function to signals with com-
plex values.

The frequency domain approach to convolutive mixtures is
to transform the problem into an instantaneous BSS problem
in the frequency domain [14], [15], [17], [18].

Using a T-point short-time Fourier transformation for (1),

we obtain,
X(w,m) = H(w)S(w,m), (3)

where w denotes the frequency, m represents the time-
dependence of the short-time Fourier transformation,
S(w,m) = [S1(w,m), Sa(w,m)]7 is the source signal vector,
and X(w,m) = [X1(w,m), Xa(w,m)]T is the observed signal
vector. We assume that the (2x2) mixing matrix H(w) is in-
vertible, and that Hji(w) # 0. Also, H(w) does not depend
on time m.

The unmixing process can be formulated in a frequency

bin w:
Y (w,m) = W(w)X(w,m), (4)
where Y(w,m) = [Yi(w,m),Ya(w,m)]T is the estimated

source signal vector, and W (w) represents a (2x2) unmixing
matrix at frequency bin w. The unmixing matrix W(w) is
determined so that Yi(w,m) and Y2(w, m) become mutually
independent. The above calculation is carried out at each fre-
quency independently. This paper considers the DFT frame
size T to be equal to the length of unmixing filter Q.
Hereafter, the convolutive BSS problem is considered in
Note that

digital signal processing in the time and frequency domains

the frequency domain unless stated otherwise.

are essentially identical, and all discussions here in the fre-
quency domain are also essentially true for the time-domain
convolutive BSS problem.

2.8 Scaling and Permutation Problems

Applying the model in the frequency domain introduces a
new problem: the frequency bins are treated as being mu-

tually independent. As a result, the estimated source signal



components are recovered with a different order in the differ-
ent frequency bins. Thus the trivial permutation ambiguity
associated with time-domain ICA, i.e., the ordering of the
sources, now becomes nontrivial.

In frequency-domain BSS, the scaling problem also be-
comes nontrivial, i.e., the estimated source signal compo-
nents are recovered with a different gain in the different fre-
quency bins. The scaling ambiguity in each frequency bin
results in a convolutive ambiguity for each source, this re-
sults in an arbitrary filtering. This reflects the fact that

filtered versions of independent signals remain independent.
3. What Is ICA?

Independent component analysis (ICA) is a statisti-
cal method that was originally introduced in the context
of neural network modeling [19], [20], [21], [22], [23], [24], [25],
[26]. Recently, this method has been used for the BSS of
sounds, fMRI and EEG signals of biomedical applications,
wireless communication signals, images, and other applica-
tions. ICA thus became an exciting new topic in the fields of
signal processing, artificial neural networks, advanced statis-
tics, information theory, and various application fields.

Very general statistical properties are used in ICA theory,
namely information on statistical independence. In a source
separation problem, the source signals are the “independent
components” of the data set. In brief, BSS poses the problem
of finding a linear representation in which the components
are mutually independent. ICA consists of estimating both
the unmixing matrix W(w) and sources s;, when we only
have the observed signals x;.

The unmixing matrix W(w) is determined so that one out-
put contains as much information on the data as possible.
The value of any one of the components gives no informa-
tion on the values of the other components. If the unmixed
signals are mutually independent, then they are equal to the
source signals.

3.1 What Is Independence?

Independence is a stronger concept than “no correla-
tion,” since correlation only deals with second-order statis-
tics whereas independence deals with higher-order statistics.
Independent components can be found by nonlinear, nonsta-
tionary, or time-delayed decorrelation.

In the nonlinear decorrelation approach, if the unmixing
matrix W(w) is a true separating matrix and y; and y» are
independent and have a zero mean, and the nonlinear func-
tion @(-) is an odd function such that ®(y;) also has a zero

mean, then
E[®(y1)y2] = E[®(y1)]E[y2] = 0. (5)

We look for such unmixing matrix W (w) that gives (5). The

question here concerns, how should the nonlinear function

be chosen?

The answers can be found by using several background
theories for the ICA. Using any of these theories, we can de-
termine the nonlinear function in a satisfactory way. These
are the minimization of mutual information, maximization
of nongaussianity, and maximization of likelihood.

For the nonstationary and time-delayed decorrelation ap-
proaches, see Sect. 4.

3.2 Minimization of Mutual Information

The first approach for ICA, inspired by information theory,
is the minimization of mutual information. Mutual informa-
tion is a natural information-theoretic measure of statistical
independence. It is always nonnegative, and zero if, and
only if, the variables are statistically independent. There-
fore it is natural to estimate the independent components by
minimizing the mutual information of their estimates. Mini-
mization of mutual information can be interpreted as giving
the maximally independent component.

3.3 Maximization of Nongaussianity

The second approach is based on the maximization of non-
gaussianity. The central limit theorem in probability theory
says that the distribution of a sum of independent random
Roughly

speaking, the sum of independent random variables usually

variables tends toward a Gaussian distribution.

has a distribution that is closer to Gaussian than either of
the original random variables. Therefore, the independent
components can be found by finding the directions in which
the data is maximally nongaussian.

Note that in most classic statistical theories, random vari-
ables are assumed to have a Gaussian distribution. By con-
trast, in the ICA theory, random variables are assumed to
have a nongaussian distribution.

Many real-world data sets, including speech, have super-
gaussian distributions. Supergaussian random variables typ-
ically have a spiky probability density function (pdf), i.e., the
pdf is relatively large at zero compared with the Gaussian
distribution. A speech signal is a typical example (Fig. 3).

3.4 Maximization of Likelihood

The third approach is based on the maximization of likeli-
hood. Maximum likelihood (ML) estimation is a fundamen-
tal principle of statistical estimation, and a very popular ap-
proach for estimating the ICA. We take the ML estimation
parameter values as estimates that give the highest proba-
bility for the observations.

ML estimation is closely related to the neural network prin-
ciple of maximization of information flow (infomax). The in-
fomax principle is based on maximizing the output entropy,
or information flow, of a neural network with nonlinear out-
puts. We maximize the mutual information between the in-
puts z; and outputs y;. Maximization of this mutual infor-

mation is equivalent to a maximization of the output entropy,
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so infomax is equivalent to maximum likelihood estimation.
3.5 Three ICA Theories Are Identical
It is of interest to note that all the above solutions are
identical [27]. The mutual information I(y1,y2) between the

output y; and y2 is expressed as

2
I(y,v2) = ) H(w) — H(ys, 1a), (6)
i=1
where H(y:) are the marginal entropies and H(y1,¥z2) is the
joint entropy of the output. The entropy of y can be calcu-
lated by using p(y) (pdf of y) as follows:

H(y) = E[log ;(1?)] = p(y)log ﬁ. (7

Mutual information I(y;,y2) in Sect. 3.2 is minimized by
minimizing the first term, or maximizing the second term
of (6).

maximization of nongaussianity in Sect. 3.3 achieves mini-

Gaussian signals maximize the first term, namely

mization of the first term. On the other hand, maximization
of the joint entropy of the output in Sect. 3.4 maximizes
the second term. Accordingly, the above mentioned three
approaches are identical. For more details of these theories,
see [11], [28], [29], [30].

3.6 Learning Rules

To achieve separation, we vary the unmixing matrix W(w)
in (4), and see how the distribution of the output changes.
We search for the unmixing matrix W(w) that minimizes the
mutual information, maximize the nongaussianity, or maxi-

mize the likelihood of the output. This can be accomplished

by the gradient method.

Bell and Sejnowski derived a very simple gradient algo-
rithm [31]. Amari proposed the natural gradient version, and
increased the stability and convergence speed [32]. This is a
nonlinear extension of the ordinary requirement of uncorre-
latedness, and in fact, this algorithm is a special case of the
nonlinear decorrelation algorithm. The theory makes it clear
that the nonlinear function must correspond to the derivative
of the logarithm of the pdf of the sources.

Hereafter, we assume that the pdf of the (speech) sources is
known, that is, the supergaussian distribution of the speech
sources is known. It also assumes that the nonlinear function
is set in a satisfactory way that corresponds to the derivative
of the logarithm of the pdf, namely the nonlinear function is

properly set at tanh(:).

4. How Speech Signals Can Be Sepa-
rated?

This paper attempts a simple and comprehensive (rather
than accurate) exploration from the acoustical signal pro-
cessing perspective. With the ICA-based BSS framework,
how can we separate speech signals?

The simple answer is to diagonalize Ry, where Ry is a
(2x2) matrix:

Ry — | @) (eve) | &

(@(Y2)Y1) (2(Y2)Y2)
The function ®(-) is a nonlinear function. The operation ()
is the averaging operation used to obtain statistical infor-
mation. We want to minimize the off-diagonal components,
while at the same time, constraining the diagonal compo-
nents to proper constants.

The components of the matrix Ry correspond to the mu-
tual information between Y; and Yj. At the convergence
point, the off-diagonal components, which are the mutual

information between Y7 and Y2, become zero:
(®(Y1)¥2) =0, (2(Y2)Y1)=0. (9)

While at the same time, the diagonal components, which
only control the amplitude scaling of the output ¥; and Y3,

are constrained to proper constants:
(e(M)N1) =c1, (B(Y2)Y2) =ca. (10)

To achieve this convergence, we use the recursive learning

rule

Wi = Wi + nAW;, (11)

aw, o | @@ e |
@)Y e - (1))

When Ry is diagonalized, AW converges to zero.



If e = c2 = 1, the algorithm is called holonomic. If
a1 = (®(Y1)Y1) and c2 = (®(Y2)Y2), the algorithm is called
nonholonomic.

4.1 Second Order Statistics vs.

Statistics

If ®(Y1) = Y1, we have the simple decorrelation:

Higher Order

(#(M1)Ya) = ("iYz) = 0. (13)

This is not sufficient to achieve independence. However, if we
have nonstationary sources, we have this equation for multi-
ple time blocks, and thus can solve the problem. This is the
nonstationary decorrelation approach [33].

Or, if we have colored sources, we have a delayed correla-

tion for a multiple time delay:
(®#(N1)Yz2) = (Yi(m)Ya(m + 7)) =0, (14)

thus we can solve the problem. This is the time-delayed
decorrelation (TDD) approach [34], [35].
These are the approaches of second order statistics (SOS).
On the other hand if, for example, ®(Y1) = tanh(Y1), we
have:

(®(Y1)Y2) = (tanh(¥1)Y2) = 0. (15)
With a Tailor expansion of tanh(-), (15) can be expressed as

y: 5y 1y
(-5 +75 - 315

o) ¥a) =0, (16)

thus we have higher order or nonlinear decorrelation, then
we can solve the problem. This is the approach of higher
order statistics (HOS).

4.2 Second Order Statistics (SOS) Approach

The second order statistics (SOS) approach exploits the
second order nonstationary/colored structure of the sources,
namely crosstalk minimization with additional nonstation-
ary/colored information on the sources. Weinstein et al. [10]
pointed out that nonstationary signals provide enough ad-
ditional information to estimate the unmixing matrix W(w)
and proposed a method based on nonstationary decorrela-
tion. Some authors have used the SOS approach for mixed
speech signals [4], [36].

This approach can be understood in a comprehensive way
in that we have four unknown parameters Wj; in each fre-
quency bin, but only three equations in (9) and (10) since
Y1Ys = Y2Y: when ®(Y;) = Vi, that is, the simultaneous
equations become underdetermined. Accordingly the simul-
taneous equations cannot be solved.

However, when the sources are nonstationary, the second
order statistics is different in each time block. Similarly,
when the sources are colored, the second order statistics is
different in each time delay. As a result, more equations are

available and the simultaneous equations can be solved.

In the nonstationary decorrelation approach, the source
signals Si(w,m) and Sz(w,m) are assumed to have a zero
mean and be mutually uncorrelated. To determine the un-
mixing matrix W(w) so that ¥1(w,m) and Y2(w,m) become
mutually uncorrelated, we seek a W(w) that diagonalizes
the covariance matrices Ry (w, k) simultaneously for all time
blocks k,

Ry (w, k) = W(w)Rx(w, k)WH (w)
= W(w)H(w)As(w, k)H ()W ()
= Ac(w, k), (17)

where ¥ denotes the conjugate transpose, Rx is the covari-
ance matrix of X(w) as follows,
M-1
Rx(w,k) = = 3 X(w, Mk+m)X" (w, Mk-+m),(18)
M e 4
As(w, k) is a covariant matrix of source signals that is a dif-
ferent diagonal matrix for each time block k, and A.(w, k) is
an arbitrary diagonal matrix.
The diagonalization of Ry (w,k) can be written as an

overdetermined least squares problem,
; ; H
arg min g ||diag{ W (w)Rux (w, k)W (w)}
~W(w)Rx (w, )W (w)||?

st, »_|/diag{W(w)Rx(w,k)W"(@)}I*£0, (19)
k
where ||x||? is the squared Frobenius norm and diagA is the
diagonal components of the matrix A. The solution can be
found by the gradient method.
In the time-delayed decorrelation approach, Rx is defined

as follows,
1 M-1
Rx(w,7) = 77 Zo X(w, m)X" (w,m + 1), (20)

and we seek a W(w) that diagonalizes the covariance matri-
ces Ry (w, ;) simultaneously for all time delays ;.

4.3 Higher Order Statistics (HOS) Approach

The higher order statistics (HOS) approach exploits the
nongaussian structure of the sources. Or more simply, we
could say that we have four equations in (9) and (10) for
four unknown parameters W;; in each frequency bin. Accord-
ingly the simultaneous equations can be solved. To calculate
the unmixing matrix W(w), an algorithm has been proposed
based on the minimization of the Kullback-Leibler diver-
gence [14], [15]. For stable and faster convergence, Amari [37]
proposed an algorithm based on the natural gradient. Using
the natural gradient, the optimal unmixing matrix W(w) is

obtained by using the following gradient iterative equation:

Wi (w) = Wi(w)
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+1 [diag ((B(Y)Y™)) —(@(Y)Y")[Wi(w), (21)

where Y=Y (w,m), (-) denotes the averaging operator, i is
used to express the value of the i-th step in the iterations,
and 77 is the step size parameter. In addition, we define the

nonlinear function ®(-) to signals with complex values as

®(Y) = tanh(Y™) + j tanh(¥Y®), (22)

where Y(®) and Y are the real part and the imaginary
part of Y, respectively [14].
For the complex numbered nonlinear function, the polar

coordinate version

®(Y) = tanh(abs(Y)) &’ *8(¥) (23)

was shown to outperform the Cartesian coordinate version
(22) both theoretically and experimentally [38].

5. Separation Mechanism of BSS

BSS is a statistical, or mathematical method, so the phys-
ical behavior of BSS is not obvious. We are simply attempt-
ing to make the two output signals ¥1 and Y2 independent.
Then, what is the physical interpretation of BSS?

We can understand the behavior of BSS as two sets of
ABFs[39]. An ABF can create only one null towards the
jammer signal when two microphones are used. BSS and
ABFs form an adaptive spatial null in the jammer direction,
and extract the target.

The separation performance of BSS is compared with that
of ABF. Figure 4 shows the directivity patterns obtained by
BSS and ABF. In Fig. 4, (a) and (b) show directivity patterns
by W obtained by BSS, and (c) and (d) show directivity pat-
terns by W obtained by ABF. When Tgr = 0, a sharp spatial
null is obtained by both BSS and ABF [see Figs. 4(a) and
(c)]. When Tr = 300 ms, the directivity pattern becomes
duller for both BSS and ABF [see Figs. 4(b) and (d)].

6. Conclusions

The blind source separation (BSS) of convolved mixtures
of acoustic signals, especially speech, was examined. Source
signals can be extracted only from observed mixed signals, by
achieving nonlinear, nonstationary, or time-delayed decorre-
lation. The statistical technique of independent component
analysis (ICA) was studied from the acoustic signal process-
ing point of view.

BSS was interpreted from the physical standpoint show-
ing the equivalence between frequency-domain BSS and two
sets of microphone array systems, i.e., two sets of adaptive
beamformers (ABFs). Convolutive BSS can be understood
as multiple ABF's that generate statistically independent out-
put, or more simply, an output with minimal crosstalk.

Because ABF and BSS mainly deal with sound from the
jammer direction by making a null towards the jammer, the
separation performance is fundamentally limited [40]. This
understanding clearly explains the poor performance of BSS
in the real world with long reverberation. If the sources are
not “independent,” their dependency results in bias noise to
obtain the correct unmixing filter coefficients. Therefore, the
BSS performance is upper bounded by that of the ABF.

However, in contrast to the ABF, no assumptions regard-
ing array geometry or source location need to be made in
BSS. BSS can adapt without any information on the source
positions or period of source existence/absence. This is be-
cause, instead of adopting power minimization criterion that
adapt the jammer signal out of the target signal in ABF, a
cross-power minimization criterion is adopted that decorre-
lates the jammer signal from the target signal in BSS. It was
shown that the least squares criterion of ABF is equivalent
to the decorrelation criterion of the output in BSS. The er-
ror minimization was shown to be completely equivalent to
a zero search in the cross-correlation.

Although the performance of the BSS is limited by that
of the ABF, BSS has a major advantage over ABF. A strict
one-channel power criterion has a serious crosstalk or leak-
age problem in ABF, whereas sources can be simultaneously
active in BSS. Also, ABF needs to know the array manifold
and the target direction. Thus, BSS can be regarded as an

intelligent version of ABF.
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