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Exponentially Weighted Stepsize NLMS
Adaptive Filter Based on the Statistics
of a Room Impulse Response

Shoji Makino, Member, IEEE, Yutaka Kaneda, Member, IEEE, and Nobuo Koizumi

Abstract—This paper proposes a new normalized least-mean-
squares (NLMS) adaptive algorithm with double the convergence
speed, at the same computational load, of the conventional NLMS
for an acoustic echo canceller. This algorithm, called the ES (ex-
ponentially weighted stepsize) algorithm, uses a different stepsize
(feedback constant) for each weight of an adaptive transversal
filter. These stepsizes are time-invariant and weighted propor-
tional to the expected variation of a room impulse response. The
algorithm is based on the fact that the expected variation of
a room impulse response becomes progressively smaller along
the series by the same exponential ratio as the impulse response
energy decay. As a result, the algorithm adjusts coefficients with
large errors in large steps, and coefficients with small errors in
small steps. A transition formula is derived for the mean-squared
coefficient error of the proposed algorithm. The mean stepsize
determines the convergence condition, the convergence speed, and
the final excess mean-squared error. The algorithm is modified
for a practical multiple DSP structure, so that it requires only
the same amount of computation as the conventional NLMS. The
algorithm is implemented in a commercial acoustic echo canceller
and its fast convergence is demonstrated.

1. INTRODUCTION

N ACOUSTIC echo canceller can overcome the acoustic

feedback that interferes with teleconferencing and hands-
free telecommunication. It adaptively identifies the transfer
function between a loudspeaker and a microphone, and then
produces an echo replica which is subtracted from the real
echo.

Various adaptive algorithms are applicable to an acoustic
echo canceller. The recursive least-squares (RLS) algorithm
[1] provides fast convergence at the price of a high com-
putational load. Recently developed fast RLS algorithms still
require excessive computation [2], [3]. The least-mean-squares
(LMS) algorithm [4], [5], on the other hand, is robust and
simple. The normalized LMS (NLMS) algorithm [6], whose
convergence speed is independent of input signal power,
is widely used in commercial acoustic echo cancellers [7],
[8]. However, the major drawback of the LMS and NLMS
algorithms is their slow convergence. For example, the mean-
squared error in the NLMS takes 2 s to converge for a white
noise input signal and 10 s for speech for 8-kHz sampling
rate and a filter with an order of 4000. Therefore, there is a
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strong need to increase the convergence speed of the LMS
and NLMS.

A stepsize parameter (feedback constant), used in many
gradient-type adaptive algorithms, controls the convergence
rate of the filter coefficients but also determines the final ex-
cess mean-squared error from the Wiener solution. Therefore,
both a time-varying stepsize and a time-varying matrix-form
stepsize [9] have been introduced to obtain fast convergence
in the transient state and a small excess mean-squared error
in the steady state. These time-varying stepsize algorithms,
however, require complicated control of the stepsize. On the
other hand, the convergence speed of the conventional NLMS
with a time-invariant stepsize has a maximum, attained when
the stepsize is unity for white noise [10].

Knowledge of the room impulse response is rarely used
in conventional algorithms. An adaptive algorithm suited to
the variation of an acoustic echo path is expected to improve
convergence. In this paper, the room impulse response was
measured repeatedly, and the impulse response variation was
studied to determine its statistical characteristics. Based on the
results, the ES (exponentially weighted stepsize) algorithm is
proposed.

This paper is organized as follows. A brief review of
acoustic echo cancellers and some conventional adaptive al-
gorithms are given in Section II. The new adaptive algorithm
is derived in Section III. Section IV discusses the properties
of the proposed algorithm, followed by the modifications for
a practical acoustic echo canceller in Section V. The real-
time experimental -results are shown in Section VI. Section
VII summarizes the paper.

II. AcousTiC ECHO CANCELLERS AND CONVENTIONAL
ADAPTIVE ALGORITHMS

A. Configuration of an Acoustic Echo Canceller

The configuration of an acoustic echo canceller is shown
in Fig. 1. The echo canceller identifies the transfer func-
tion of the acoustic echo path, i.e., the impulse response
h(k) between the loudspeaker and the microphone, where
h(k) = [h1(k), ha2(k),---]7 and hi(k), ha(k),--- represent
coefficients of the impulse response at discrete time k. Since
the impulse response h(k) varies as a person moves and varies
with the environment, an adaptive filter fz(k) is used to identify
h(k). Usually, h(k) is a finite impulse-response (FIR) filter
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Fig. 1. Configuration of an acoustic echo canceller.

because a wide range of simple adaptive algorithms have been
proposed for an FIR filter.

An echo replica §j(k) is created by convolving h(k) with
the received input vector z(k), where z(k) = [z(k),z(k —
1),--+,z(k — L+ 1)]7 and L represents the number of taps.
The echo replica §(k) is then subtracted from the real echo
y(k) to give the error e(k) = y(k) — §(k) + n(k), where
n(k) represents the ambient noise. In the double-talk situation
where the near-end speech is added to the microphone, it
is common to disable the adaptation in the echo canceller.
Therefore, the near-end speech is disregarded in the noise term
n(k). The adaptive FIR filter k(k) is adjusted to decrease the
error power in every sampling interval. The adaptive algorithm
should provide real-time operation, fast convergence, and high
echo return loss enhancement (ERLE, defined as the ratio of
the real echo power to the error power excluding the ambient
noise).

B. Conventional Adaptive Algorithms

1) RLS Algorithm: The RLS algorithm [1] updates the filter
coefficient vector h(k) according to the following equations:

h(k + 1) = h(k) + k(k)e(k) (1)
_ v P (k)z(k)

Ay @

P(k+1)=v'Pk) — v k(E)z(k)TP(K)  (3)

e(k) = y(k) — h(k)T=(k) + n(k) )

where,
h(k) = [ha(k), ha(k),- -, hr(K)]T,
z(k) = [z(k),z(k—1), -, z(k—L+1)]T: received input
vector,
fz,-(k) where i = 1,-- -, L, coefficients of an FIR filter,
L number of taps,
k(k) Lth-order gain vector,
P(k) L x L matrix,
v forgetting factor (0 < v < 1),
R variance of n(k).
P(k) is defined as the inverse of the input autocorrelation
matrix, and can also be regarded as the coefficient error
autocorrelation matrix for constant impulse response hy, i.e.,

P(k) = E[{ho — h(k)}{ho — R(k)}7T) )

where E[-] represents the statistical expectation.

The important property of the RLS algorithm is its fast
convergence. When h(k) is time-invariant, the mean-squared
error in the RLS converges in 2L iterations [1]. However, it
demands a high computational load, requiring O(L?) multi-
ply—add operations for each update represented by (1)—(4).
Recently developed fast RLS algorithms still require more
than 7L multiply-add operations [2], [3]. One has been im-
plemented in a prototype of a subband acoustic echo canceller
[11], but none have yet been implemented in commercial
acoustic echo cancellers.

2) NLMS Algorithm: The NLMS algorithm [6] is expressed
by the following equations:

\ n e(k)
h(k +1) = h(k) + a——=z(k 6
e(k) = y(k) — h(k)"z(k) + n(k) (7)
where « is the scalar stepsize (0 < a < 2) and || - || is the

Euclidean norm.

The filter coefficient vector (k) is adjusted in proportion to
both the error e(k) and the received input =(k). Convergence
of the mean-squared coefficient error is guaranteed when 0 <
a < 2, and is fastest at « = 1 for white noise. The important
property of the NLMS is the relatively small computational
load. It requires only 2L multiply-add operations for each
update in (6) and (7). As a result, the NLMS is used in
almost all commercial acoustic echo cancellers. However, it
converges very slowly. Assuming h(k) is time-invariant, the
mean-squared error in the NLMS converges in about 20L
iterations for a white noise input signal [1], ten times slower
than the RLS.

The NLMS algorithm can be regarded as a simplified
version of the RLS. Actually, (6) can be derived from (1)—(3)
by setting R = 0, = 1, and P(k) = I, where I is the
unit matrix, and by introducing the stepsize o. Many other
algorithms could be classified as being between the RLS and
the NLMS. In other words, they can be explained as simplified
versions of the RLS, but not as simple as the NLMS. They
usually converge faster than the NLMS but slower than the
RLS, with a computational load larger than the NLMS but
smaller than the RLS.

III. NEW ADAPTIVE ALGORITHM

A. Variation of a Room Impulse Response

Variation of a room impulse response, i.e., the amount
of change in a room impulse response waveform, was in-
vestigated to design an adaptive algorithm suitable for an
acoustic echo canceller. The impulse response in a room varies
for many reasons. Here, as one example and to simulate
teleconferencing, we will discuss two situations.

In the first situation, the distance between the loudspeaker
and the microphone changed. Impulse responses were mea-
sured for loudspeaker—microphone distances of 1 m ([R;)
and 0.6 m (I Rs) in a conference room. Reverberation time at
500 Hz was 350 ms. These waveforms I R; and IRz, and the
variation (I Ry — I R;) are shown in Fig 2(a). The reverberent
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Fig. 2. Variation of a room impulse response when the loudspeaker—micro-
phone distance is changed. TR; and IRy are impulse responses for loud-
speaker-microphone distances of 1 and 0.6 m, respectively. Room reverbera-
tion time at 500 Hz is 350 ms. (a) Impulse responses and their variation. (b)
Reverberant energy decay curves.

energy decay curves [12] of IR;,IR5, and IRy — IRy are
shown in Fig. 2(b).

In the second situation, three seated participants moved
around in front of the microphone. Twenty-one impulse
responses [R; (i=1,---,21) were measured in a con-
ference room with a reverberation time of 280 ms. The
speaker-microphone distance was 1 m. Two of these
waveforms /R; and IR; (i # j), the variation (IR; — IR;),
and its standard deviation ¢ are shown in Fig. 3(a). The
reverberent energy decay curves [12] of IR;, IR;, IR; — I E;,
and o are shown in Fig. 3(b).

Figs. 2 and 3 show that impulse responses attenuate ex-
ponentially, and that the variation of these impulse responses
also attenuates by the same exponential ratio.

The exponential attenuation ratio <y is the same for impulse
responses in the same room. It can be derived from the
reverberation time which is determined by the acoustical
conditions of the room, i.e., size and absorption coefficient.
Thus we can estimate the exponential attenuation ratio « from
the room conditions, or determine it by measuring one impulse
response.

B. Exponentially Weighted Stepsize (ES) Algorithm

Because of the variation of a room impulse response,
the expected error in each coefficient becomes progressively
smaller along the series by the same exponential ratio as
the impulse response. Incorporating this knowledge into the
conventional NLMS, we propose to adjust coefficients with
large errors in large steps and coefficients with small errors
in small steps. For this purpose, a stepsize matrix A with
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Fig. 3. Variation of a room impulse response when the participants move.
IR; and IR; are impulse responses. o is the standard deviation of the
variation (IR; — IR;)(i,j = 1.---.21) of the impulse response. Loud-
speaker—microphone distance is 1 m. Room reverberation time at 500 Hz is
280 ms. (a) Impulse responses and their variation. (b) Reverberant energy
decay curves.

diagonal form is introduced:

(0 51 0
. (a3
A= ' ®)
0 or

where a; = apy" (i = 1,
attenuation ratio (0 < v < 1).
Elements o; are time-invariant and decrease exponentially
from «a; to oy with the same ratio ~ as the impulse response
h(k). The new adaptive algorithm, called the ES (exponen-
tially weighted stepsize) algorithm [13], is expressed as

s s e(k) a0k
h(k+1)=h(k)+ A w||z(k}||2 (k) (9

-L) and v is the exponential

e(k) = y(k) — h(k)T=(k) + n(k). (10)

The scalar stepsize « in (6) is replaced by a stepsize matrix
A in (9). This algorithm can also be derived from the RLS
by setting the matrix P(%) in the numerator of (2) to the
constant A and P(k) in the denominator to I, the unit matrix,
v to 1, and by neglecting R. Since each element of the vector
e(k)z(k)/||=(k)||? is multiplied by element «;, this algorithm
requires an additional L multiplications. However, this can
be avoided with the modifications described in Section V.
Consequently, this algorithm requires only 2L multiply-add
operations (the same as the NLMS).

The exponentially weighted diagonal stepsize matrix was
also proposed in [14] for application to adaptive line en-
hancers. However, the algorithm in [14] aims to reduce the
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effect of old input data. It reflects the degree of variation in
the input signal statistics, and the exponential attenuation ratio
is determined only by how nonstationary the input signal is.

IV. PROPERTIES OF THE PROPOSED ALGORITHM

This section discusses various properties of the ES algo-
rithm. The canceller is assumed to have identified the room
impulse response well before time £ = 0, and the room
impulse response is assumed to change at time k£ = 0, i.e.,

k<0

_ [h,
hm)_{hm e an
h(0) = . (12)
A. Coefficient Error Transition
The coefficient error vector v(k) is defined as
v(k) = hg — h(k). (13)
Then, combining (13) and (9), and using e(k) = v(k)Tz(k) +
n(k):
(k)T =(k) n(k)
v(k+1) = v(k)- ——Ax(k)— ——=Az(k). (14)
R O] A ]
The ith component of vector »(k) is given by
L X
o vi(K)z(k—5+1
vilk +1) = vi(k) - EJ—;"J( Jok =G+ ) bt 1)
=13k — 7+ 1)
- n(k) ar(k—i+1). (15

S (k-5 +1)?

Here, z(k),v(k), and n(k) are assumed to have zero mean
and to be mutually statistically independent stationary signals.
The elements of vector z(k) are assumed to be mutually
uncorrelated, i.e.,

. . Pzy 1=J
1) E[m(k—z+1)x(k-—j+1)]={o” )
Assuming that the number of taps L is large enough, the
following approximations hold:

2) ||lz(k)||*> = L - pa, for all £,
L
) Y Ews(k)))Elz(k — i+ 1)%a(k - j + 1)7]
=1

L
zpiZEvT k)

i=1
Based on these assumptions, taking the expected values of the
mean-square of (15) for z(k), v(k), and n(k) gives

Elv;(k + 1)2] =bi(k+ 1)2

— (2 0%y 12
= b;(k) 2 7 bi(k)
Off = a? pn
W OLURS.
j=1

where b;(k)? and p,, are defined as
bi(k)? = Efvi(k)?]
pn = E[n(k)?].

When the last term in (16), which is due to ambient noise,
can be ignored, (16) can be rewritten as

bi(k + 1)2
ba(k +1)2
bL(k‘-l- T
(1=-a1/L)*  (a1/L)? (ar/L)?
_ (a2/L)*  (1—az/L)? (e2/L)
(/L)  (a/L)? - (1-az/L)
1(k)?
2
bz(fﬂ) a7
L(k)?
or in matrix form:
b(k + 1) = Qb(k). (18)

Equations (16)-(18) give the transition formula of the mean-
squared coefficient error of the ES algorithm.

B. Formula for «;
The optimum stepsizes «; which minimize

L

v(k+1)] =) bi(k+1)°

=1

Efo(k +1)T (19)

can be derived by setting the derivative of (16) with respect
to o; equal to 0. Again for the noise-free case, assuming the
last term in (16) can be disregarded, this gives
Lb;(k)? .
alz% ?J:l,...’L_
Zj:l b:r' (k)

This indicates that each stepsize should be proportional to the
mean-squared error of the corresponding coefficient.
Although [b1(k)2,---,br(k)?] has the exponential decay
characteristics of the room impulse response variation at time
k =0, it changes as the algorithm converges. This means that
b;(k)? should be estimated and «; should be adjusted for each
step of k. Some other algorithms, such as the RLS algorithms
estimate b;(k)? at the price of a high computational load.
Here, a time-invariant stepsize is used to avoid increasing
the computational cost for practical usage. Convergence of
the mean-squared coefficient error in the ES algorithm is
calculated using (16) for various exponential stepsizes a; =
b;(0)" with a parameter 7, as shown in Fig. 4. The number
of taps is 3840 and the ambient noise with a fixed SNR of
30 dB is added, where SNR is defined as the ratio of the
real echo power to the ambient noise power. Here, a; =
b:(0)° = 1 corresponds to the conventional NLMS with scalar

(20)
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Fig. 4. Convergence of the mean-squared coefficient error for various
stepsizes (aq,---,ar). Here, a; = b;(0)° = 1 corresponds to the
conventional NLMS with o = 1 and b;(0)* represents the standard deviation
of the room impulse response variation. The number of taps is 3840 and the
ambient noise with a fixed SNR of 30 dB is added.

stepsize @ = 1 which results in the fastest convergence in the
conventional NLMS.

When «; are set proportional to b;(0) (r = 2), (20) is
satisfied only at time & = 0. Consequently, convergence is
fastest only in the initial state and gets worse later. On the
other hand, when «; are set proportional to b;(0)° = 1 (r = 0),
(20) is satisfied in the steady state, since all the coefficients
have the same mean-squared error in the steady state for a
white noise input signal. However, (20) does not hold in the
initial state. Consequently, convergence is slow in the initial
state. Between these two cases, when «; are set proportional
to b;(0)! (r = 1), (20) is roughly approximated in the transient
state. In a practical acoustic echo canceller, convergence to the
ERLE of about 20 dB is important. Therefore, we select the
time-invariant stepsizes a; to be proportional to b;(0)!(r = 1),
i.e., the expected variation of a room impulse response.

a; o b;(0), 1=1,---,L. (21)

Since b;(0), i.e., the expected variation of a room impulse
response, attenuates by the same exponential ratio as the
impulse response, it attenuates to -60 dB in 1 = Tgr/Ts
samples, where Ts is the sampling interval and T is the
reverberation time of the room, defined as the time for the
sound energy to attenuate to -60 dB. On the other hand,
a; is expressed by a; = agy' "' (i = 1,---,L); therefore,
the exponential attenuation ratio -y can be calculated by the
following equation:

T
¥ = exp (—6.9 —S-)

Tn (22)

where —6.9 is log, 1073,

When the impulse response has a known fixed flat delay
in the acoustic echo path between the loudspeaker and the
microphone in a practical situation, the corresponding a; is
set to zero.

C. Steady-State ERLE

In the steady state, the following equation is assumed to
hold:

bi(k+1)% = b;(k)* = b (23)

105
Then, (16) yields
& | = a; p
2= = b? Sy 24
Y ; i |t oL, 24)
Summing b? in (24) for all i gives
= = 1
Yobi=zay bti+sa— (25)
i=1 2 ge=1 2 Pz
hence,
= &
>op= (26)
: 2—-apy
=1
where,
L
» 4 agl—~F
@ L ;a L 1-—»~ @n

Now the squared expectation of the residual echo é(k) =
y(k) — §(k) is

pe = E[e(k)?]

= v Tﬂ? 2
El{v(k)" z(k)}"] %)

> &
= 2y, = ——
= bipe =5 ——pn
i=1
Dividing both sides of (28) by p, = E[y(k)?] and taking log-
arithms yields the steady-state echo return loss enhancement,
ERLE,

ERLE.. = SNR + 10log,, (é - 1) dB)  (29)

where

ERLEo = 10log;4(py/pe)
SNR = 10']08;10(%/?7%)-

Equation (29) is the same as the equation of the steady-
state ERLE in the conventional NLMS, with « replaced by
the mean stepsize &.

D. Convergence Condition

When the eigenvalues A; of Q in (18) are such that |A;| < 1,
the mean-squared coefficient error in the ES algorithm con-
verges. The necessary and sufficient condition for convergence
is

1 L
0<5¢=Ezai<2.

i=1

(30)

This is proved in the Appendix.
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Fig. 5. Steady-state echo return loss enhancement (ERLE..). & is the mean
stepsize. The number of taps is 500 and the ambient noise with a fixed SNR
of 30 dB is added.

E. Computer Simulation Results

The above results derived in Section IV-A-D show good
agreement with computer simulation where a white noise is
used as the input signal, and the number of taps L is relatively
large. Here, as one example, computer simulation results of the
steady-state ERLE for various mean stepsizes & are shown in
Fig. 5. The number of taps is 500 and the ambient noise with
a fixed SNR of 30 dB is added. The theoretical curve given
by (29) is also shown in the figure. Fig. 5 shows that the
simulation results agree with the theoretical results (29).

In the ES algorithm, the mean stepsize & plays a very
important role, as it determines the convergence condition and
controls the tradeoff between convergence speed and excess
mean-squared error.

V. PRACTICAL MODIFICATIONS

A. Practical Modifications for Speech Input
and a Multiple DSP Structure

In a practical acoustic echo canceller, which deals with
speech input and is constructed with multiple digital signal
processor (DSP) chips, the ES algorithm previously described
needs slight modifications.

First of all, the maximum stepsize is limited. The conver-
gence condition (30) was derived assuming a white noise input
which satisfies assumptions 1)-3) in Section IV-A. However,
when these assumptions are not satisfied, i.e., when the input
signal is nonstationary such as speech, convergence condition
(30) is necessary but not sufficient. Therefore, we propose to
use the sufficient condition

0<a; <2, i=1,---,L (31)

to guarantee convergence in a practical acoustic echo canceller.

Next, the 2L multiply—add plus L multiply operations of the
ES algorithm can be reduced to 2L multiply—add operations.
In a practical system constructed with multiple DSP chips,
the exponential decay curve is approximated stepwise, and
stepsize «; is set in discrete steps with one constant value
per DSP chip, as shown in Fig. 6. This practical modification
allows the proposed algorithm to have the same computational
load, 2L, as the conventional NLMS.

a; Exponential decay curve
Qo

5\\
o |

\ Discrete steps with
LN one constant value
N per DSP chip

01 L

Tap number

Fig. 6. Stepsize o; of matrix A when o; is set in discrete steps with one
constant value per DSP chip.

ES with
40_' s G modifications
modifications
5 ——-—____.7,_,.-_-.'_——"--..._
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E L7 //
7
L/ 3
- /A \NLMS (2=10)
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0 PR (R | A M
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Fig. 7. Convergence of the ERLE in the ES algorithm with and without the
practical modifications. The number of taps is 3840 and sampling frequency

is 8 kHz. The input signal is white noise. Ambient noise with a fixed SNR
of 30 dB is added.

B. Convergence of the ES Algorithm With
and Without the Modifications

Computer simulation results on the convergence of the
ERLE in the ES algorithm with and without the practical
modifications are shown in Fig. 7. The number of taps is 3840
and the sampling frequency is 8 kHz. The impulse response
used in the computer simulation was measured in a room with
a reverberation time of 500 ms. The initial condition of the
filter coefficients were set to zero. The received input was
white noise. Ambient noise with a fixed SNR of 30 dB was
added. The curve is an average of 10 independent results.
The signal powers of the echo and residual echo used for
ERLE were calculated from the squared average of 100 data
samples. @ in the ES algorithm is 0.45 with modifications,
and 1.0 without modifications. « in the conventional NLMS
algorithm is 1.0.

Fig. 7 shows that the modifications do not have much effect
on convergence, and that ES algorithms with and without
modifications both have twice the convergence speed of the
NLMS. (Detailed comparison indicates that the modifications
result in slightly slower convergence in the transient state but
a higher ERLE in the steady state. This is due to the tradeoff
between convergence speed and excess mean-squared error.)

VI. REAL-TIME EXPERIMENTS

Real-time experiments were performed with the ES algo-
rithm implemented in a commercial acoustic echo canceller
[8] constructed with multiple DSP chips [15]. The subband
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TABLE I
SPECIFICATION OF THE EcHO CANCELLER
Band Frequency Range (kHz) No. of Taps
Lower 0.154 3840
Higher 4-7 1792

Squared error e(t)?(dB)

0 2 4 6
t (s)
(a)
o
k=3
5
S
@
=]
o
Y]
3
T
m L 1 L
0 10 20 30
t(s)
(b)

Fig. 8. Real-time experimental results on squared error level convergence
using a commercial acoustic echo canceller constructed with multiple DSP
chips. The number of taps is 3840 in the lower band and 1792 in the higher
band. Sampling frequency is 8 kHz in both bands. Room reverberation time
at 500 Hz is 300 ms. (a) Input signal: white noise. (b) Input signal: Speech
(male).

technique was used to separate the 7-kHz frequency range
into two bands, each sampled at 8 kHz. Table I lists the
specifications of the echo canceller.

For real-time operation, aj—25¢ were set to 2.0, aag7—519 to
1.0, and @54 154t t0 0.3. In the lower and higher bands & is
0.46 and 0.64, respectively. The speaker—microphone distance
was 2.5 m and the reverberation time of the room was 300 ms.

Fig. 8 shows the real-time measurements of squared error
level convergence. With a white noise input, Fig. 8(a), the
squared error level decayed to -20 dB three times as fast as the
conventional NLMS (with e = 1.0). With a speech input, Fig.
8(b), the squared error level decayed to -20 dB, twice as fast
as the conventional NLMS (with e = 1.0). The steady-state
ERLE was over 30 dB in the 7-kHz frequency range.

Thus the ES algorithm can easily replace the NLMS algo-
rithm and improve the convergence of practical acoustic echo
cancellers.

VII. CONCLUSIONS

A new NLMS adaptive algorithm has been developed
for use in acoustic echo cancellers. This algorithm adjusts
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each filter coefficient by a different stepsize. These time-
invariant stepsizes «; are set proportional to the expected
variation of a room impulse response. By modifying «; in
a practical multiple-DSP structure, this algorithm requires
only the same computational load as the conventional NLMS.
Studying the convergence gives a transition formula for the
mean-squared coefficient error of the proposed algorithm.
This also indicates that the mean stepsize detérmines the
convergence condition, convergence speed, and excess mean-
squared error. The algorithm has been implemented in a
commercial acoustic echo canceller constructed with multiple
DSP chips. Real-time experiments in a room showed that this
algorithm converges faster than the conventional NLMS: three
times as fast for a white noise input signal, and twice as fast
for speech.

APPENDIX
PROOF OF THE CONVERGENCE CONDITION

When (30) holds, the eigenvalues A; of @ in (18) obey
|Ai| < 1, as proven below.
Q is written as

(1-ay)? as s a%
2 2 2
as (1-ap)* --- as
Q= : _ ; (32)
a? a? (1-ar)?
where
a; = a;/L > 0.
Consider
201 —a?  —af —a?
2 2 2
—aj 2as — aj —aj
1-Q|= : :
~a? —a? 2ar, - a}
i
:2L_la1a2--—aL 2—20,;- (33)
=1
If
L
2-%"a;>0 (34)
=1

then all principal minors are positive. Therefore, (I — Q) is

positive-definite, i.e., all eigenvalues are positive. Therefore,

the eigenvalues A; of @ are

A <1, i=1,---,L. (35)

On the other hand, because @ is a positive matrix, i.e., all

the elements of @) are positive, the Perron-Frobenius theorem
[16] gives

-1< < (36)
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