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ABSTRACT

We classify the conventional adaptive algorithms for
acoustic echo cancellation on the basis of how well they
whiten the received input signal. We also study the relation-
ship between the conventional algorithms and the “ES fam-
ily” algorithms, which were derived from the conventional
ones by incorporating the knowledge that the expected vari-
ation in a room impulse response, which is normally treated
as unknown in acoustic echo cancellation, decreases expo-
nentially at the same exponential ratio that the impulse
response does. We show that the NLMS, ES-NLMS, pro-
jection, ES-projection, and RLS algorithms are simplified
versions of the ES-RLS algorithm.

1. INTRODUCTION

Acoustic echo cancellers are widely used for teleconfer-
encing and hands-free telecommunication systems to over-
come acoustic feedback, making conversation more comfort-
able.

The LMS algorithm and the NLMS (normalized LMS)
algorithm require few computations, so they are widely ap-
plied to acoustic echo cancellation. However, their conver-
gence speeds need to be increased. The projection algo-
rithm [1] whitens the received input signal, i.e., it removes
the correlation between consecutive received input vectors.
This process is especially effective for speech, which has
a highly non-white spectrum. The RLS (recursive least-
squares) algorithm, whose convergence does not depend on
the input signal, is the fastest conventional adaptive algo-
rithm.

Our previous study of the variation characteristics of a
room impulse response, normally considered an “unknown
system” for acoustic echo cancellation, showed that the ex-
pected variation in a room impulse response attenuates by
the same exponential ratio that the impulse response does
[2]. As a result, we proposed three adaptive algorithms:
the ES-NLMS (exponentially weighted stepsize NLMS) al-
gorithm [2], which reflects the variation characteristics of
a room impulse response in the conventional NLMS al-
gorithm; the ES-projection (exponentially weighted step-
size projection) algorithm [3], which reflects the variation
characteristics of a room impulse response in the conven-
tional projection algorithm; and the ES-RLS (exponentially
weighted stepsize RLS) algorithm [4], which reflects the
variation characteristics of a room impulse response in the
conventional RLS algorithm.

The basic concept of these three algorithms is to ad-
just the coefficients with large errors in large steps and the
coefficients with small errors in small steps. For this pur-
pose, they use a stepsize matrix with a diagonal form. The
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Figure 1: Configuration of an acoustic echo canceller.

diagonal components are time-invariant and weighted pro-
portionally to the expected variation in the room impulse
response. Consequently, they converge twice as fast as the
corresponding conventional algorithm.

In this paper, we classify the conventional adaptive al-
gorithms on the basis of how well they whiten the received
input signal and study the relationship between the “ES
family” of algorithms and the conventional adaptive algo-
rithms. We show that the NLMS, ES-NLMS, projection,
ES-projection, and RLS algorithms are simplified versions
of the ES-RLS algorithm.

2. ACOUSTIC ECHO CANCELLER AND
CONVENTIONAL ADAPTIVE ALGORITHMS

2.1 Acoustic echo canceller

The configuration of an acoustic echo canceller is shown
in Fig. 1. An echo canceller adaptively identifies impulse re-
sponse h(k) between the loudspeaker and the microphone at
discrete time k. FIR filter coefficient h(k) should be a copy
of h(k). Echo replica §(k) is created by convolving h(k)
with received input vector x(k); then §(k) is subtracted
from actual echo y(k) to give error e(k). Adaptive FIR fil-
ter fl(k) is adjusted to decrease the error power at every
sampling interval. The adaptive algorithm should provide
fast convergence and high echo return loss enhancement
(ERLE).

2.2 Classification of conventional adaptive
algorithms
The conventional adaptive algorithms can be classified
according to the extent to which the old input-output rela-
tionship is used to calculate filter coefficient vector h(k+1).

h(k +1)Tx(k) = y(k) (1)
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h(k+1)Tx(k —1) =y(k-1) (2)
h(k+1)Tx(k—p+1) =y(k—p+1) (3)
h(k +1)7x(0) = y(0). (4)

Equation (1) means that if x(k) is input, then filter h(k+1)
outputs correct value y(k) and so on for (2)-(4).

(a) NLMS algorithm

The NLMS (normalized least-mean-squares) algorithm
updates filter coefficient h(k + 1), which satisfies only (1).
However, the number of unknowns L is larger than the num-
ber of equations, which is one here, i.e., the set of equa-
tion is underdetermined. Therefore, the NLMS algorithm
chooses the minimum-norm solution.
. The NLMS algorithm updates filter coefficient vector
h(k) according to the following equations:

e(k)

e(k) = y(k) — B(k)"x(k) + n(k), (6)

where _ E ) .
h(k) = [h1(k), ha(k), -+, hL(k)]T:
iz;(k)(i =1,-.+,L): coefficients of an FIR filter,
x(k) = [z(k),z(k - 1),---,2(k = L +1)]"
: received input vector,
a : scalar stepsize (0 < a < 2),
6 : small positive constant.

Filter coefficient vector h(k) is adjusted only in the
direction of received input vector x(k). Therefore, when
the received input signal is a colored signal, such as speech,
where consecutive vectors x(k) and x(k — 1) are highly cor-
related, h(k) is hard to adjust, which results in slow conver-
gence. With NLMS, convergence for speech input is about
five times slower than that for white noise [2].

(b) Projection algorithm

The p-th order projection algorithm updates filter co-
efficient h(k+1), which satisfies (1)-(3) (p < L). Again the
number of unknowns L is larger than the number of equa-
tions p, i.e., the set of equations is underdetermined. There-
fore, the projection algorithm also chooses the minimum-
norm solution.

The p-th order projection algorithm updates filter co-
efficient vector h(k) as follows.

R(k+1) = h(k)+oX(k)[X(k)TX(k) + 61 e(k)
= h(k) + o[Bi(k)x(k) + Ba(k)x(k — 1)
+- -+ Bp(k)x(k - p+1)] (M)
B(k) = [X(k)TX(k) + 1) " e(k) (8)
X(k) = [x(k),x(k = 1), -, x(k = p +1)] (%)

e(k) = y(k) - X(k)Th(k) + n(k)
& [e(k), (1 - a)e(k=1),--, (1= ) "e(k —p+1)]" (10)

B(k) = [Bu(k), Ba(K), -, Bp(k)]" (11)
y(k¥) = [y(k),y(k=1),---,9(k—p+1)]T  (12)
n(k) = [a(k),n(k=1),---,n(k—p+1)]".  (13)

. In the projection algorithm, filter coefficient vector
h(k) is adjusted in the direction of the plane produced by
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x(k), x(k—1), -+, x(k—=p+1). In other words, the projec-
tion algorithm whitens the received input signal according
to projection order p. Therefore, convergence can be im-
proved for a colored input signal, where consecutive input
vectors x(k), x(k—1), - -+, x(k—p+1) are highly correlated.

The second-order projection algorithm doubles the con-
vergence speed of the NLMS for speech input. Higher-order
projection algorithms achieve even faster convergence. By
introducing an intermediate variable and by using the slid-
ing windowed FTF (fast transversal filter), the computa-
tional complexity can be reduced to 2L + 20p multiply-add
operations [5][6], where L is the number of taps and p is the
projection order.

(c) RLS algorithm

The RLS (recursive least-squares) algorithm updates
filter coefficient h(k+1), which satisfies all the input-output
relations, (1)-(4). In the RLS case, when L < k, the number
of unknowns L is smaller than the number of equations (k+
1), i.e., the set of equations is overdetermined. Therefore,
the RLS algorithm chooses the least squares solution.
. The RLS algorithm updates filter coefficient vector
h(k) according to the following equations.

B(k +1) = h(k) + k(k)e(k) (14)

_ v P(k)x(k)
kk) = T ) TP (() (15)
P(k+1) =v'P(k) — v k(k)x(k)TP(k)  (16)
e(k) = y(k) — B(k)"x(k) + n(k), (17)

where
k(k) : L-th order gain vector,
P(k) : L x L matrix,
v : forgetting factor (0 < v < 1).

In the RLS algorithm, the received input is fully whitened,
so convergence is independent of the input signal, resulting
in fast convergence for all input signals.

3. “ES FAMILY” ALGORITHMS

3.1 Variation in room impulse response

An adaptive algorithm with suitable special assump-
tions about the characteristics of the “unknown system”
to be identified can improve convergence. Although the
detailed waveform is complicated, the envelope of a room
impulse response (our “unknown system”) attenuates ex-
ponentially, and more importantly, the expected variation
in the room impulse response also attenuates by the same
exponential ratio when a person moves or the environment
changes [2]. Exponential attenuation ratio is common to
all impulse responses in the same room. It can be derived
from the reverberation time, which is determined by the
acoustical conditions of the room, i.e., size and absorption
coefficient. We can thus estimate the exponential attenu-
ation ratio from the room conditions, or determine it by
measuring one impulse response.

3.2 Exponentially weighted stepsize NLMS
(ES-NLMS) algorithm

Because of the variation in room impulse response,
the expected error in each coefficient becomes progressively
smaller at the same exponential ratio that the impulse re-
sponse does. We incorporated this relationship into the



conventional NLMS algorithm by adjusting the coefficients
with large errors in large steps and the coefficients with
small errors in small steps by using a stepsize matrix with
a diagonal form.

The ES-NLMS algorithm is expressed as
e(k)

h(k+ 1) = h(k) + pA mx(k)' (18)
where
ay 0
A “’ (19)
0 ar
and

p : scalar stepsize (0 < g < 2),
ai=apyt (i=1,--+,L),
v : exponential attenuation ratio of room impulse

responses (0 < v < 1).

Elements o; are time-invariant and decrease exponen-
tially from o3 to oz at the same ratio v that impulse re-
sponse h(k) does. This algorithm requires only 2L multiply-
add operations (the same as the NLMS) after being modi-
fied into a practical multiple-DSP structure.

This algorithm doubles the convergence speed of the
NLMS. Like the NLMS, filter coefficient vector h(k) is ad-
justed only in the direction of received input vector x(k).
Therefore, the ES-NLMS algorithm converges slowly when
the received input signal is a colored signal, such as speech.

3.3 Exponentially weighted stepsize projection
(ES-projection) algorithm

The ES-projection algorithm reflects the exponentially
decaying characteristics of the room impulse response and
whitens the received input signal. The second-order ES-
projection algorithm converges about four times as fast as
the NLMS for speech input. It is expressed as follows.

h(k+1) = h(k)+pAXK)[X(k)TAX(k) + 61 e(k)
= h(k) + pA[Br (k)x(F) + B2 (k)x(k — 1)

+o0 + Bp(k)x(k —p +1)] (20)

B(k) = [X(k)TAX(k) + 61) " e(k) (21)

e(k) = y(k) — X(k)Th(k) + n(k)
& [e(K), (1 we(k —1), -+, (1= w) " e(k—p+ D)7 (22)

The computational complexity of the ES-projection al-
gorithm is reduced by introducing an intermediate variable,

z(k):
z(k+1) = z(k)+ pA[Br(k—p+1) +- -+ Bp(k)]x(k—p+1)
23
B(k) = [X(k)TAX(k) + 6I) " e(k) 24

e(k) & [e(K), (1 = we(k — 1), -+, (1 = )P e(k = p+1))7

25)
g(k) = 2(k)"x(k) + pr(k)"s(k - 1) 526)

r(k) = [x(k)TAx(k—1),x(k)TAx(k - 2),
v, x(k)TAx(k—p+ 1)]" (27)

s(k—1)

Pi(k—1)
Ba(k— 1)+ Br(k—2)

Bo-1(k — 1) + Bp-2(k —“2;) +o+Bi(k—p+1)
(28)

Intermediate variable z(k) is related to impulse re-
sponse replica h(k):

2(k) = h(k)—pAlx(k—1),x(k=2),---,x(k—p+1)Js(k—1).

(29)

Furthermore, the same scheme as in [5] and [6] can be
used to reduce the computational complexity.

3.4 Exponentially weighted stepsize RLS
(ES-RLS) algorithm

In the ES-RLS algorithm, stepsize matrix A is added
to matrix Pgs(k).

Bk +1) = B(k) + k(k)e(k) (30)

N Pgs(k)x(k)
k() = TP ss(H) 1)
Pas(k+1) = Pas(k) - k()x(k) Pas(k) + = (32)
e(k) = y(k) — h(k)Tx(k) + n(k), (33)

where
Pgs(k) : L x L matrix,
R : variance of n(k).

Elements [a1, a3, ..., 1] of stepsize matrix A are not
really “stepsizes” as in the ES-NLMS and ES-projection
algorithms. However, as described below, these elements
function as if they were stepsizes, and from the relationship
between the ES-NLMS and ES-projection algorithms, we
call matrix A a stepsize matrix.

The stepsize is known to be related to forgetting fac-
tor v of the RLS algorithm. In fact, according to (32),
when A /R is large compared to Pgs(k), the proportion of
Pgs(k) in Pes(k + 1) becomes small. In other words, old
information is forgotten quickly. Thus, the mean stepsize,
a=1% f‘___l ai, has the same role as the forgetting factor
in the RLS algorithm [4].

Time-invariant A/R is always added in (32). In other
words, an exponentially attenuating bias is always added
to the diagonal elements of matrix Pgs(k). As a result,
gain vector k(k) attenuates exponentially in (31), so fil-
ter coefficient vector ﬁ(k) is adjusted by the exponentially
attenuating adjustment vector in (30). Accordingly, this

- algorithm adjusts the coefficients with large errors in large
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steps and the coefficients with small errors in small steps.

4. RELATIONSHIP AMONG THE
ALGORITHMS

The NLMS, projection, and RLS algorithms can be
generalized when p =1 as:

hee B+ D) =B0) + X()Tre(k), (34)

* : generalized inverse.

The only difference among these three algorithms is the
number of columns in matrix X(k) and the number of ele-
ments in vector e(k).



When A = 0, the ES-RLS algorithm in (30)-(33) can
be regarded as an RLS algorithm (14)-(17) with a forgetting
factor of 1, i.e., the growing windowed RLS.

Next, for simplicity, when p =3, p =1, and § =0 in
the ES-projection algorithm (20)-(22), solving (21) we have

- e(k)
Aulk) = ImmTAR ] T T ) (35)
N e(k)
£2(k) = TR TAR (e 2T T rmme)  (36)
N — e(k)
Pak) = Tamxmyz Ax (e "ame T ) (37)
where

det[X(k)TAX (k)] = rooT11722 + TorTozm12 + To1To2T12

—T00T12T12 — To1To1722 — To2T02711 (38)

rij = x(k —1)TAx(k — 5). (39)
We define c1(k), c2(k), and u(k) as
B2 _ T2aTi0 — T127T20
Hl=———r—r—-— 40
(k) Br riira2 — 2712 (40)
cz(k) = _Ea_ . T11720 — T127T10 (41)

u(k) = x(k) — cr (k)x(k — 1) — ca(k)x(k — 2)

- r22Q11 —T12Q12 _ T11Q22 — 71202 Ix(k), (42)

T117T22 — T12T12 T11722 — T127T12

where

Qij = x(k — i){Ax(k — j)}7

and I is the unit matrix. When

(43)

r22Q11 — r12Q12
T11T22 — T12T12

_ m1Q22 — 711202
’

T11T22 — T127T12
4

Pges(k) = %[I -

then by substituting (31), (42), and (44) into (30), we get
Au(k)
R+ x(R)TAu(R) ")

Equation (45) can be regarded as setting 4 = 1 and adding
R to the denominator of the second term on the left side
in the special formula for 4 = 1 of the ES-projection algo-
rithm. :

Furthermore, by setting A = I, we get the conven-
tional projection algorithm. Equation (42) can be under-
stood from the Gram-Schmidt process as

h(k+1)=h(k) + (45)

vi(k) = x(k - 2) (46)

Vi 5 - i

va) =x(k - 1) - BHEE v
vi (k)Tx(k) v;(k)Tx(k)

vs(k) = x(k)—vl(k)Tvl(k) vi(k)— v2(k)Tv2 (k)

48
The second and third terms of (48) are understood as tht)a
projection of x(k) onto the orthogonal vectors vi(k) and
va(k), respectively. Therefore, u(k)[ = vs(k)] is orthogonal
to the plane produced by vi(k) and v2(k), which is equiva-
lent to the plane produced by x(k —1) and x(k —2). Thus,
the correlated components of x(k —1) and x(k — 2) are sub-
tracted from x(k), and/or u(k) is orthogonal to x(k—1) and
x(k —2). From (42), c1(k) and c2(k) are also understood as

va(k) = u(k).
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linear prediction filter coefficients and u(k) as a prediction

error vector. Filter coefficient vector fx(k) is adjusted in the

direction of the “decorrelated” or “whitened” vector u(k).
Next, when projection order p equals 1, we get

and (45) becomes u(k) = (&), (49)
B(k+1) = B0 + grapemge® 60

Equation (50) can be regarded as the ES-NLMS algorithm
with p = 1 and § = R. Also, (50) can be introduced by
setting Pes(k) = A/R in (30) and (31). Furthermore, by
setting A (k) = I, we get the conventional NLMS algorithm.

5. CONCLUSIONS

Our previously proposed ES-NLMS, ES-projection,
and ES-RLS algorithms for acoustic echo cancellers incor-
porate the fact that the impulse response attenuates ex-
ponentially at the same exponential ratio that the impulse
response does. These algorithms double the convergence
speed of the corresponding conventional algorithm.

We classified the conventional adaptive algorithms ac-
cording to the extent to which the old input-output re-
lationship is used to calculate the filter coefficient vector
and studied the relationship between the “ES family” of
algorithms and the conventional adaptive algorithms. We
showed that the NLMS, projection, and RLS algorithms are
one “family” of algorithms, and that the ES-NLMS, ES-
projection, and ES-RLS algorithms are an extended one.
Finally, the NLMS, ES-NLMS, projection, ES-projection,
and RLS algorithms were shown to be simplified versions
of the ES-RLS algorithm.
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