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Abstract

To achieve high performance of speech enhancement with
low signal distortion under underdetermined conditions, the
time-frequency-bin-wise switching (TFS) beamformer has
recently been proposed. Its extension that applies a time-
frequency (TF) mask constructed on the basis of direction of
arrival (DOA) estimation for postprocessing, has been shown
to further improve the performance. However, the precision
of the TF mask estimated using spatial information strongly
depends on acoustic factors such as reverberation. To address
this issue and improve the accuracy of the mask estimation,
in this paper, we propose a novel method that combines the
TFS beamformer with a deep clustering (DC)-based TF mask,
which is estimated using monaural signals. We investigate the
performance of the TFS beamformer under various reverber-
ation conditions. The experiments revealed that the proposed
method further improved the performance of the TFS beam-
former in speech enhancement even under heavy reverbera-
tion, whereas the conventional method using DOA estimation
failed.

1. Introduction

In recent years, with the development of automatic speech
recognition (ASR) and robot hearing, the importance of
speech enhancement has considerably increased. Owing to
the wide usage of stereo microphone built-in small devices
such as smartphones and voice recorders, speech enhance-
ment that serves dual-channel signals is a particular requisite.
Beamforming and blind source separation (BSS) [1] are the
two main methods to deal with this problem. Beamforming
and BSS methods using spatial filtering [2—] are noteworthy
in the low distortion of the enhanced target speech. How-
ever, their performance degrades when there are fewer micro-
phones than sources, i.e., underdetermined conditions.

On the other hand, methods applying time-frequency (TF)
masking or multichannel Wiener filters [5—8] can sufficiently
suppress noise and interferers under underdetermined condi-
tions, while they are tend to distort the target speech. To
accomplish high noise suppression performance with low
distortion under underdetermined conditions, some attempts
have recently been made to combine beamforming with
masking techniques on the basis of the sparseness assumption
of speeches [9—11]. In [9], a limited amount of pretrained dic-
tionaries of mechanical noise covariance to construct the most
suitable filter in each TF bin so that the output includes fewer
noise residuals. Similar to [9],in [10,1 1], the time-frequency-

bin-wise switching (TFS) beamformer, which applies the op-
timal filter selected from a set of predefined beamformers ac-
cording to the minimum absolute value of outputs to each TF
bin, has been proposed for underdetermined speech enhance-
ment. All of these methods can be interpreted as adopting
beamformers to multiple masked spectrograms summing up
to the observed one, which exploits the benefits of both the
beamforming technique and TF masking.

Taking account of its low computational cost and high
noise suppression performance, in this paper, we consider the
TFS beamformer. With the assumption that only the target
speech and one interferer exist at each TF bin, all N — 1
interferers can be suppressed by constructing N — 1 beam-
formers and switching them among the TF bins. Note that
N can be larger than the number of microphones M. How-
ever, there are still interferer components remaining when the
assumption does not hold, namely, multiple interferers exist
simultaneously at one TF bin. To further suppress these resid-
uals, a TF mask constructed on the basis of the directions
of arrival (DOA) of the sources is employed for postprocess-
ing [10]. It has been shown to be effective in improving the
performance of speech enhancement. However, the precision
of the constructed TF mask tends to decrease in highly rever-
berant environments, where accurately estimating the DOA
of sources becomes an extremely difficult task [12—14]. To
address this drawback and increase the accuracy of mask esti-
mation, in this paper, we propose the use of a mask estimation
method based on deep neural networks for the postprocessing
of the TFS beamformer, where a TF mask is estimated us-
ing monaural signals instead of multichannel signals. DNN-
based TF masking [ 5, 1 6] has recently gained much attention
because of its impressive performance in speech separation.
Specifically, we adopt deep clustering (DC) [17] with gated
convolutional neural networks (CNNis) to take the advantage
that high mask estimation accuracy can be achieved with a
remarkably small amount of training data [18].

2. Time-frequency-bin-wise switching beamformer

Let 2;(w,t) be the ith microphone signal at the angular
frequency w in the tth time frame in the short-time Fourier
transform (STFT) domain. With two microphones, a beam-
former is generally given by the following equations:

y(w7t) = WH(w)X(wvt)’ (D
x(w,t) = [ml(wvt)»xQ(wvt)]Tv @)
ww) = [wi(w),wa(w)]", 3)
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Table 1: Dominant sound patterns at each TF bin of different
signals. tgt, i1, and i stand for target speech, interferer 1, and
interferer 2, respectively.

(row] x [ w1 [ w2 [ yres | ypc |
1 tgt tgt tgt tgt tgt

2 i1 0 i1 0 0

3 iz ig 0 0 0

4 tgt, i1 tgt tgt, i1 tgt tgt

5 tgt, io tgt, ig tgt tgt tgt

6 i1, 12 ig i1 i1 orip 0

where y(w, t) is the output of the beamformer, w(w) denotes
the spatial filter vector, (-)* denotes the transpose, and (-)
denotes the Hermitian transpose. For the design of the spatial
filter w(w), adaptive beamformers, e.g., the minimum vari-
ance distortionless response (MVDR) beamformer [19, 20],
are widely used. Theoretically, a beamformer with M micro-
phones can suppress up to M — 1 interferers, which means
that speech enhancement with a beamformer cannot achieve
satisfactory performance under underdetermined conditions
(M < N).

To achieve sufficient speech enhancement performance un-
der such conditions, the TFS beamformer [10] has been pro-
posed, where the optimal filter selected from multiple beam-
formers is used at each TF bin. For simplicity, we consider a
case where a three-source mixture x(w, t) consisting of a tar-
get speech and interferers 1 and 2 is observed by two micro-
phones. In this case, we cannot construct a null beamformer
that suppresses both interferers simultaneously. Supposing
that only the target speech and interferer k are observed (k =
1, 2), we can construct the beamformer & with a spatial fil-
ter wy(w) that suppresses the interferer k& by a conventional
linear beamforming method. By applying the K constructed
beamformers, we obtain K outputs from the observed signal
x(w,t):
wi(wx(w,t),k=1,...,K. 4)
Here, wy(w) is the spatial filter of the beamformer k. By
considering statistically independent target speech and inter-
ferers, we can assume that the magnitude of the target speech
is smaller than that of the sum of the target speech and any
interferer. The TFS beamformer is then performed according
to the following criterion:

Yrrs(w, t) = {z; EZ: g

yr(w,t) =

i s, 0] < o )] g,
otherwise.

Equation (5) implies that the TFS beamformer selects the out-
put of the beamformer with the smaller magnitude, which is
equivalent to perform optimal filter selection in terms of min-
imizing the output. Table 1 summarizes the seven patterns of
the dominant sound source at each TF bin in the three-source
mixture case. In the case in the 5th or 6th row of Table 1,
one beamformer outputs the target speech, and the other one
outputs the target speech and a slightly altered version of an
interferer. According to the previously mentioned assump-

tion, the TFS beamformer selects the output only including
the target speech. In the case in the 7th or 8th row of Table 1,
the TFS beamformer cannot suppress both interferers because
there are M or more interferers in a TF bin, whereas the TFS
beamformer suppresses only the most dominant interferer.

3. Postprocessing with deep clustering
3.1 Proposed method

Speech enhancement by the TFS beamformer resulted in
a performance of high noise reduction with less distortion.
However, as shown in the 7th and 8th rows of Table 1, ei-
ther interferer 1 or 2 still remains. To reduce these residual
components without distorting the target speech, we consider
using the following TF mask
Q(wu t) = m(wa t)yTFS (w7 t)7 (6)
where m(w, t) is a soft or binary mask, the element of which
equals to 1 at those TF bins including the target speech com-
ponents regardless of the existence of interferers. gjw, t) rep-
resents ypg (w, t) for the conventional method and yp - (w, t)
for the proposed method. In [10], the mask is constructed
on the basis of DOA estimation, where the accuracy of the
mask directly depends on the DOA estimates. In long re-
verberant environments, however, it is difficult to estimate
DOA accurately [ 12—14] since the correct spatial information,
namely, the phase difference, is difficult to obtain because of
reflections. Moreover, since DOA estimation is performed
for the observed multichannel signals, which is independent
of the TFS beamformer, the benefits gained from the higher
signal-to-noise ratio (SNR) thus cannot be exploited for the
DOA estimation. To deal with this issue, motivated by the
remarkable results recently achieved using a DNN in monau-
ral source separation, we propose using a DNN to estimate
the TF mask. Using training data and appropriately designed
labels, namely, the speech enhanced by the TFS beamformer
and DNN-based mask defined as
1 |s(w,t)| > threshold
m(w,t) = {O otherwise, @)
we can train a DNN to estimate the TF mask for the out-
put of the TFS beamformer. Here, s(w,t) denotes the target
speech. Note that the W-DO assumption [2 1] is not required.
The enhanced speech y(w, t) is finally obtained using for (6).
The process flow of the proposed method is shown in Fig. 1.
Specifically, we employ DC [17] with a gated CNN [ 18] for
DNN-based mask estimation. The main difference between
gated CNN and typical CNN is that a gated linear unit (GLU),
the second term of (9), is used as nonlinear activation func-
tion instead of, e.g., regular rectified linear units. Since a
GLU controls information passed on in the hierarchy, the
gated CNN can capture long-term dependences without the
vanishing gradient problem even with many layers.

3.2 Deep clustering with gated CNN

On the basis of the assumption that each TF bin of a mix-
ture signal is dominated by a single source, i.e., W-DO, DC
[17] separates sources by clustering feature vectors embed-
ded from each TF bin. Let X = {X.} € R*!, where ¢
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Figure 1: Process flow of TFS+DC.

denotes a pair of frequency and time indices (w,t) and C'is
equal to the number of TF bins Q x T'. A set of feature vec-
tors V. = (Ven,...,Vep)?, which are called embedding
vectors, are obtained by a DNN 'V = gg(X), where g(-) de-
notes a nonlinear function, ©® denotes the parameters of the
network, and V = {V.} € R“*P is a matrix consisting of
embedding vectors in a row. The network is trained by mini-
mizing the following objective function:

J(V)=[[VvVT - YYT|}

= IVIVIE = 2[VIYE +[[YTYE, ®

where || - || is the squared Frobenius normand Y = {Y,,,} €
RE*N is a matrix composed of N-dimensional one-hot vec-
tors in a row indicating to which source each TF bin belongs.
During the test, a clustering algorithm (e.g., K-means) is ap-
plied to the assigned embedding vectors to construct binary
masks for each source. Since the aim of using DC is to fur-
ther enhance the speech outputted by the TFS beamformer,
in the proposed method, the input is ypg(w, t) and only the
mask for the target speech is estimated. For the network ar-
chitecture, we use a gated CNN [18].

By using H;_; to denote the output of the (I — 1)th layer,
we obtain the output H; of the [th layer as

H = (H;_1 W, + b)) @c(H_1 +« WF+055),  (9)

where W! and W7 are the weight parameters, bf and b} are
the bias parameters of the /th layer, ® denotes element-wise
multiplication, and o is the sigmoid function.

3.3 Advantages of combining TFS beamformer with
DNN-based TF masking

Comparing with the method combining the TFS beam-
former with DOA-based TF masking, the proposed method
has the following merits. First, since the TFS beamformer
suppresses one of the interferers in each TF bin, the input sig-
nal of the DNN, i.e., the output of the TFS beamformer, is
more sparse than the observed signals, which facilitates the
mask estimation. Second, the performance of noise reduction
can be controlled by adjusting the threshold in (7). For exam-
ple, by setting the threshold at a sufficiently small value (e.g.,
1075), we can mainly suppress interferers described at the
7th row in Table 1 while holding the distortion of the target
speech minimum. Since the TFS beamformer can guarantee
a distortionless response to the target speech, forcing the TF
mask to keep this property is important to realize distortion-
less enhancement. If we set the threshold at a relatively large
value, the DNN is trained to suppress all the components hav-
ing less energy than the threshold so that interferers described

at the 8th row in Table 1 having small energy can also be sup-
pressed.

4. Experiments
4.1 Experimental conditions

To evaluate the effect of the proposed method, we con-
ducted experiments using the ATR503 database [22]. The
database consists of four male and six female speakers, and
the number of audio files uttered by each speaker is 503. We
divided the entire database into training and test sets. The
training set consisted of six speakers and 450 utterances of
each speaker. The remaining 53 utterances spoken by the
other four speakers were used as the test set so that the experi-
ments was conducted in a speaker- and utterance-independent
manner.

We generated a total of 720 mixture signals (about 1 hour)
for training the network by summing up three convolved
speech signals randomly selected from the training set. Room
impulse responses (RIRs) with reverberation times of {300,
400, 500, 600, 700, 800} ms were generated using the image
method with the codes available in [23]. The DOA of the tar-
get speech was fixed at 90° and those of interferers were set
at 70° and 130°. All the audio files were downsampled to 8
kHz. We computed complex spectrograms using a Hann win-
dow with a length of 512 ms and shift of 256 ms. To obtain
the speeches enhanced by the TFS beamformers ypg and
the corresponding labels, we applied a TFS beamformer with
an MVDR beamformer [10] to the generated mixture signals
and computed the label using (7) with threshold set at 1072,
We trained two networks using data under each reverberation
condition.

Mixture signals for the test with reverberation times at
{300, 400, 500, 600, 700, 800}ms were generated in the
same way, whereas DOAs of interferers were randomly se-
lected from {10°, 30°, 50°, 70°, 110°, 130°, 150°, 170°}.
For each reverberation condition, we generated 10 mixture
signals, which were about 5 seconds long. Other experimen-
tal conditions are shown in Table 2.

We calculated signal-to-distortion ratio (SDR), signal-to-
interference ratio (SIR), and signal-to-artifacts ratio (SAR)
[24] and compared the performance of the proposed method
TFS+DC with the degenerate unmixing estimation technique
(DUET) [6], which is BSS via TF masking with a stereo
microphone, the TFS beamformer (TFS) [10], and the TFS
beamformer with the DOA-based mask (TFS+DOA) [10].

4.2 Results and discussion

Figure 2 shows results achieved by each method under
closed reverberation time conditions. It is noteworthy that
TFS+DC led to few artifacts, which are detrimental to many
speech processing applications such as ASR. The methods us-
ing the TFS beamformer significantly outperformed DUET.
The SDRs obtained by TFS+DOA and TFS+DC were higher
than or equivalent to that achieved by the TFS beamformer,
which confirmed the effectiveness of applying TF masking
for postprocessing in improving the speech enhancement per-
formance. Moreover, the proposed method achieved the best
scores, especially in the relatively highly reverberant case
where TFS+DOA failed to achieve further improvement from
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Table 2: Experimental conditions.

Number of microphones 2
Distance between microphones 4 cm
Reverberation time 300, 500 ms /
(training/test) 300, 400, 500,

600, 700, 800 ms
DOA of the target (training/test) 90° /90°
DOA of interferers 70°, 130°/
(training/test) 10°, 30°, 50°, 70°,

110°, 130°, 150°, 170°

Distance between

sources and microphones 2m
Embedding dimension 20
Number of hidden layers 5
Number of channels 128
Learning rate 0.001
Optimizer Adam
Minibatch size 4
Number of epochs 50

the TFS beamformer. These results confirmed the observation

that the performance of TFS+DOA tends to decrease under
highly reverberant conditions. They also confirmed the effec-
tiveness of the proposed method.

To confirm the generalization ability of the trained
network, we conducted an experiment employing the
model trained under the 500 ms reverberant condition
(TFS+DC(500)) to enhance signals under various reverber-
ation conditions. The results are shown in Fig. 3. Although,
as the reverberation time increased, the performances of the

(aB) SDR B) SIR (dB) SAR

8 20 8
6 15 6
4 10 4
2 5 2
’ 300 500 ’ 300 500 ’ 300 500 (ms)

DUET ©TFS mTFS+DOA mTFS+DC

Figure 2: Average SDR, SIR, and SAR over 10 test signals
under each reverberation condition.

@B) SDR (@B) SIR @B) SAR

8 18 8
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TFS ——TFS+GC(500) TFS+GC(matched)

Figure 3: Results of speech enhancement by TFS and
TFES+DC for reverberation times of 300-800 ms.
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TFS beamformer and TFS+DC decreased in terms of all the
criteria, TFS+DC always exceeded the TFS beamformer at
a definite degree. The performance of using the model of [1]
TFS+DC(500) was very close to the results obtained using [2]
the model of TFS+DC(matched) which is trained on the data [3]
with the same reverberation time as the test data. The re- (4]
sults indicates that the proposed method can accomplish fur-

ther improvement regardless of the reverberation conditions. [5]
Furthermore, these results confirmed that the trained network [6]
generalized well to cope with a wide range of reverberation

times. L7

5. Conclusion (10
[11
In this paper, we proposed a combination of the TFS beam- [12

former and TF masking based on DC with a gated CNN as

an underdetermined speech enhancement method having high [13]
noise reduction performance with low signal distortion. The [14]
TES beamformer efficiently suppresses interferers even un- | 3]
der underdetermined conditions. Furthermore, by applying [16]
DNN-based TF masking for postprocessing, it is possible to [17]
suppress interferers that cannot be suppressed by the TFS |g)
beamformer. To confirm the effectiveness of the proposed [19)
method, we conducted simulation experiments in reverberant [20]
environments. As the results, we confirmed that the proposed
method achieved superior speech enhancement performance [21]
to the conventional method with the DOA-based TF masking, [22]
especially in long reverberant environments. Additionally, we (23]
also confirmed that the proposed method can enhance the tar-
get speech while keeping the distortion of the target speech to [24)
the minimum with appropriately designed labels.
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