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Abstract

In this paper, we propose a new method for interpolation
of virtual signals between two real microphones to improve
speech enhancement performances in underdetermined situ-
ations. The virtual microphone technique is a recently pro-
posed technique that can virtually increase the channel of ob-
served signals by linearly interpolating the phase and non-
linearly interpolating the amplitude based on [-divergence
in the short-time Fourier transform (STFT) domain. This
technique has been shown to be effective in improving the
speech enhancement performance of beamforming in under-
determined situations. It is reasonable to linearly interpolate
the phase based on the sound propagation model and non-
linearly interpolate the amplitude to increase the information
content of the observed signals. However, there is no the-
oretical proof that -divergence is the optimal criterion for
amplitude interpolation due to the complexity of the physical
model of amplitude. In this paper, we propose using an au-
toencoder to search for the optimal interpolation domain in a
data-driven manner. We perform amplitude interpolation in
the latent space, a low dimensional representation space of
observed mixture signals that is trained so that the interpo-
lated virtual signals are optimal for conducting beamforming
with high performance. The experimental results revealed
that the proposed method achieved higher speech enhance-
ment performance than the conventional methods.

1. Introduction

In recent years, with the development of automatic speech
recognition (ASR) and robot hearing, the importance of
speech enhancement has considerably increased. Owing to
the wide usage of stereo microphone built-in small devices
such as smartphones and voice recorders, speech enhance-
ment that serves dual-channel signals is a particular requisite.
Beamforming and blind source separation (BSS) are the two
main methods to deal with this problem. Beamforming and
BSS methods using spatial filtering [1, 2, 3] are noteworthy
in the low distortion of the enhanced target speech. How-
ever, their performance degrades when there are fewer mi-
crophones than sources, i.e., underdetermined conditions. To
achieve satisfactory speech enhancement performance with
such devices having small microphone array, many methods
have been proposed to enhance speech in underdetermined
situations such as time-frequency masking [4, 5, 6], multi-
channel Wiener filtering [7, 8], and nonnegative matrix fac-
torization (NMF) [9]. Although these methods are notewor-
thy that they can significantly improve speech intelligibility
in underdetermined situations, they face a tradeoff between
low signal distortion and high noise reduction performance.
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Figure 1: Microphone array signal processing with virtual
microphone technique.

On the other hand, the virtual microphone technique [10]
allows the well-studied determined methods to be applied to
the signals recorded in underdetermined situations by virtu-
ally increase the number of channels. With two real micro-
phone signals, the virtual microphone technique estimates the
observed signal at a position where is no real microphone
placed by interpolating phase and amplitude independently.
Based on the W-disjoint orthogonality (W-DO) [11, 4] as-
sumption, phases of virtual signals can be obtained using
linear interpolation by approximately modeling propagating
waves as plane waves. For amplitude estimation, since mod-
eling the amplitudes of propagating waves is difficult due to
the complicated acoustic environments, complex logarithmic
interpolation and a generalized version, where the interpola-
tion rules are derived as closed-form solutions of an optimiza-
tion problem formulated using S-divergence, have been pro-
posed and experimentally shown to be effective in improving
speech enhancement performances using a maximum signal-
to-noise (maxSNR) beamformer. Furthermore, the results in
paper [10] indicated that speech enhancement performances
tend to increase when the improved nonlinearity is applied to
amplitude interpolation.

However, there is no theoretical proof that S-divergence
is the optimal criterion for formulating the amplitude inter-
polation problem. Because the physical model of amplitude
is complicated, it is challenging to design appropriate rules
manually. To overcome this problem, this paper proposes
using an autoencoder to search for the optimal interpolation



domain in a data-driven manner. Specifically, we perform
amplitude interpolation in the latent space and train the au-
toencoder so that the interpolated virtual signals become op-
timal for conducting beamforming. We use 2-dimensional
fully convolutional neural networks (CNNSs) to design the au-
toencoder, which allows the network to handle inputs with ar-
bitrary length and perform interpolation by taking the whole
spectrogram into account. This is different from the conven-
tional method using S-divergence, where the interpolation is
performed in a time-frequency bin-wise manner.

Related work: An attempt has already been made to em-
ploy a CNN to estimate the amplitude of virtual signals [12],
where a CNN is trained to output the amplitude directly given
the amplitudes of the observed signals and the interpolation
position. This paper differs from this method by training an
autoencoder to constrain the estimated amplitude to be a mix-
ture signal by explicitly performing interpolation in the la-
tent space and then passing it through the decoder, which is
trained as a reconstructor of the mixture signals. This de-
sign makes the method more intuitive and the network more
interpretable. To overcome the strong assumption made for
phase and amplitude interpolation, a method that trains a
time-domain TasNet to estimate virtual signals in the time
domain has been recently proposed [13]. Although this su-
pervised method has shown high performance in improving
speech enhancement performance, training networks using
real microphone signals limits the flexibility of location to
place the virtual microphone. Moreover, collecting training
data in various acoustic conditions are high-cost.

2. Virtual microphone technique based on 3-divergence

We model the microphone signals in the STFT domain.
Here, let z,,(w,t), m = 1,2 be the mth real microphone
signal at the angular frequency w in the tth time frame.
The amplitudes of these signals are denoted as A, (w,t) =
|Zm (w,t)] and the phases are denoted as ¢, (w,t) =
ZZm(w,t). A virtual microphone signal v(w, ¢, a, 8) is de-
fined as an observation at the point o obtained by internally
dividing the line joining two real microphones in the ratio
a : (1 — «) (See Fig 1). S is the hyperparameter of (-
divergence, which is used as the metric for amplitude inter-
polation. Hereafter, we omit w, ¢, &, and [ for notation sim-
plicity.

We first introduce the interpolation of phase. We assume
W-DO [4, 11] for mixed signals that each time-frequency bin
is dominated by at most one sound source, which means that
the observed signal in each time-frequency bin can be re-
garded as a single wave. Based on this assumption, the phys-
ical model of propagating waves can then be approximated as
that of a plane wave. The phase ¢, = Zv of a virtual micro-
phone signal v can then be interpolated linearly on the basis
of that model as

Oy = (1 —a) p1 + ado. 9]

Since the observed phase has an aliasing ambiguity given by
¢; £ 2n,;7 with integer n;, we need to make a constraint

|p1 — 2| <7

to eliminate the ambiguity of the interpolated phase.
For the interpolation of amplitude, since there are many
acoustic conditions such as the distance between the sound
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sources and microphones, and direction of arrival (DOA) of
sources, it is difficult to faithfully model the amplitude of a
propagating wave. Therefore, an interpolation rule based on
the S-divergence has been used instead of considering physi-
cal models [10]. The 3-divergence between the amplitude of
a virtual microphone A, = |v| and that of the ith real micro-
phone A; is defined as

D/B(AV’Ai) =
A,(log A, —log 4;) + (A; — A,) (B=1),
Ay Ay B
E—logz—l (B=0),
AP AP A, AP N
— v i TV otherwise),
BG-D B a1 ( )

3)

where Dg(A,, A;) is continuous at § = 0 and 8 = 1. The
interpolation rule of the amplitude A, is then given as the
closed-form solution of the optimization problem that mini-
mizes op,, the sum of Dg(A,, A;) weighted by the hyper-
parameter of the virtual microphone interpolation position a:

UD[S = (1 _a)Dﬂ(AV)A1)+aDﬁ(AV7A2)7 (4)
Ay = argminy op,. (5)

By differentiating o p, with respect to A, and setting it to 0,
the interpolated amplitude is obtained as

A, =

exp ((1 —a)log A1 +alogA2)  (B=1),

3 A ©)
((1 —a) AP 4 aAg_l) """ (otherwise).

Note that the phase can be interpolated with arbitrary real

number o, whereas the amplitude interpolation is defined

only in the domain of 0 < a < 1 when 8 # 1. The ex-

trapolation of a virtual microphone in the domain o < 0 and

« > 1 was considered in [14].

It has shown that the virtual microphone technique based
on the B-divergence is effective in improving speech enhance-
ment performance in underdetermined situations [10]. How-
ever, there is no proof that S-divergence is the optimal crite-
rion for amplitude interpolation since we cannot analyze the
physical model of amplitude.

3. Proposed method: VMInNet

In this paper, we propose using an autoencoder to search
for the optimal interpolation domain in a data-driven manner
to overcome the above-mentioned problem. The flowchart of
the proposed method is shown in the Fig. 2. In the proposed
method, the two-channel observed signals are separated into
the amplitude spectrograms A,,, and phase spectrograms ¢,,
as the conventional method does. The amplitude spectrogram
A, is then embedded into latent variables z,, = Ey(A,,) by
an encoder network Fy(-). We interpolate the amplitude of
virtual microphone signal at the latent space as

(M

The latent variables z1, z2, z, are then converted to the am-
plitudes A,, = Dy(z,,) and A, = Dy(z,) by a decoder

zy = (1 — a)z1 + azo.
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Figure 2: Flowchart of proposed method.

network D, (-). Here, 6 and ¢ denote trainable parameters
of the encoder and decoder networks. The phase of virtual
signal ¢y is linearly interpolated using (1). The virtual signal
v is obtained by concatenating the estimated amplitude and
phase spectrogram

v=A,exp{jdy}. ¥

We call the network “VMInNet”, an abbreviation of “interpo-
lation network for virtual microphone”.

To maximize the potential of the data-driven method,
where task-dependent loss function is allowed, we train
the network using minimum power distortionless response
(MPDR) beamformer-based loss function. Specifically, the
loss function is designed to minimize the mean squared
error between the target signal s(w,t) and the output of
the MPDR beamformer to enforce the generated ampli-
tude to be optimal for constructing the MPDR beam-
former. For the observed signal consisting of two real
and 7 virtual microphone signals, we use x(w,t) =

[21(w, 1), v1(w, 1), ,vr(w, 1), 22w, t)]" to denote the
mixture signal vector. A beamformer that enhances the
source of interest is given by

Y(w, t) = w" (w)z(w, 1), 9)

w(w) = [wi(w) - war(W)]" (10)

where y(w, t) is the output signal of the beamformer, w(w)
denotes the spatial filter vector, ()T denotes the transpose,
()" denotes the Hermitian transpose, and M = 2 + I de-
notes the number of channels of the observed signals. The
spatial filter w(w) derived based on the MPDR beamformer
is expressed as

®(w) la(w
) = v
®(w) = Elz(w, t)x(w, )] (12)

Here, ®(w) is a covariance matrix of the observed sig-
nals at frequency w, and a(w) is the relative transfer func-
tion (RTF) of target, which is defined as the ratio of the

encoder <{

input (44, 4;)
output (44, 4z, 4y)

P |
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Figure 3: Network architecture of VMInNet. “w”, “c”, and
“k” denote feature size, channel number, and kernel size, re-
spectively.

acoustic transfer functions h(w) = [hy (w) - - - has(w)] " from
the target source to the microphone array, i.e., a(w) =

|:1 hz(w) hM(w)j|T

hi(w) T ha(w)
The encoder and decoder parameters 6 and 1 are trained
by minimizing the following loss function:

LOW) = Y [Dy(Eg(An(w,t)) = Am(w, 1))

m,w,t

+ 3w w)z(w, t) — s(w, B (13)

Here, the first term of (13) is the restoration error of the au-
toencoder to ensure that the virtual amplitude latent variables
generated in the latent space are restored to the amplitude
space. The second term is the MPDR beamformer loss. This
training criterion allows the network to search for the opti-
mal interpolation space where the interpolated virtual signal
is optimal for constructing an MPDR beamformer. Note that
other task-dependent loss function can also be considered as
long as the loss function is differentiable.

The network architecture is shown in Fig. 3. We use 2-
dimensional CNNss to carefully design the network architec-
ture, which allows the network to handle inputs with arbitrary
length and perform interpolation by taking the whole spectro-
gram into account. After each CNN layer, we employ batch
normalization to stable the training process.

4. Experiments

4.1 Experimental conditions

To evaluate the effectiveness of the proposed method, we
conducted speech enhancement experiments in underdeter-
mined situations. The training dataset consisted of 3 speakers
excerpted from the Wall Street Journal (WSJO) corpus [15]
and the audio files for each speaker were 1 minute. The test
dataset was comprised of 10 speakers, where the audio files
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Table 1: Experimental conditions

Table 3: SDR, SIR, SAR [dB] achieved with each method.

Number of real microphones M 2or3
Number of sound sources N 3
Distance between microphones 4 cm
Reverberation time 120 ms
Sampling rate 8 kHz
Input SNR 0dB
Window length / shift 1024 / 512 samples

Table 2: SDR, SIR, SAR [dB] achieved with each method.

Conditions SDR SIR  SAR
2 real mic + 1 vir mic (beta) 5.97 8.58 10.06
2 real mic + 1 vir mic (cnn) 5.34 15.54 5.92
2 real mic + 1 vir mic (prop.) | 7.04 13.32  8.36
2 real mic 2.18 2.86 12.56
3 real mic 16.07 19.49 18.85

for each speaker were about 9 minutes. The observed mix-
ture signals were generated by adding reverberant signals of
3 speakers together, where the reverberant signals were gen-
erated by convolving the impulse responses simulated by a
room impulse response generator [16] with clean speech sig-
nals. The DOA of the target was set to 90°, and those of inter-
ferers were set to 50° and 150° with reverberation time of 120
ms. The experimental conditions are listed in Table 1. We
used signal-to-distortion ratio (SDR), signal-to-interference
ratio (SIR) and signal-to-artifacts ratio (SAR) [17] as evalua-
tion criteria to quantify the speech enhancement performance.
Here, we used source image of signals as reference signals.

We chose the method interpolating amplitude based on -
divergence (beta) [10], and that uses a CNN to directly esti-
mate the amplitude of virtual signals (cnn) [12] as baseline
methods. We assumed that RTF was known for all the meth-
ods. The RTF at the position of virtual microphone is es-
timated using the conventional S-divergence-based method.
The RTF can also be estimated using a neural network, which
is one direction of our future work since we would like to
focus on amplitude interpolation in this work.

4.2 Results and discussion

Table 2 shows the results obtained by each method. The
proposed method achieved the best score in terms of SDR,
which confirmed the effectiveness of the proposed method in
improving speech enhancement performance. This result in-
dicates that interpolation in latent space is more effective than
using [-divergence and directly estimating interpolated am-
plitudes with a CNN. We also compared the results of using
phase or RTF of real microphones and VMInNet for ampli-
tude interpolation to investigate the importance of accurately
interpolating amplitude. From these results, we found that
although accurate phase and RTF could improve the perfor-
mance, the improvement was slight, which indicates that the
accuracy of amplitude highly influences the speech enhance-
ment performance.

5. Conclusion

In this paper, we proposed VMInNet, an autoencoder net-
work for interpolating the amplitude of virtual microphone
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Conditions SDR SIR SAR
amp (prop), phase (linear), tf (beta) | 7.04 13.32 8.36
amp (prop), phase (real), tf (beta) 738 1398 8.75
amp (prop), phase (linear), tf(real) 7.37 1394 874
amp (prop), phase (real), tf (real) 741 14.02 8.77

signals, which aims to improve speech enhancement perfor-
mances in underdetermined situations. We trained the net-
work to search for the interpolation domain, which is opti-
mal for conducting an MPDR beamformer. The experimental
results revealed that the proposed method outperformed the
conventional virtual microphone techniques by achieving a
SDR improvement of about 1.1 dB.
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