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1. Introduction

It is an important task to develop robots for coping with large-
scale disasters. Robots working in a disaster site are required in
emergency response and in the restoration of the disaster site,
which are difficult or dangerous tasks for humans. There are
tasks for modern-day robots in disaster response, but their func-
tions are insufficient outdoors and their ability to respond to
unexpected situations is unsatisfactory. For example, a typical
robot cannot smoothly move in a disaster site and evaluate the
situation, as well as act in an environment that does not fit its
working condition. To support the development of robots in a
disaster site, which can overcome some of the problems of con-
ventional robots, the Council for Science, Technology and In-
novation promoted the ImPACT Tough Robotics Challenge [1].
In this research and development program, we aim to realize
remote-controlled and autonomous robots that are effective in
extreme situations, and develop technologies that will become
the basis for the development of outdoor robots.

The hose-shaped rescue robot (Fig. 1) [2] was developed for
entering narrow and dark places covered with rubble in a dis-
aster site and finding survivors inside it. This robot vibrates its
body by the motors attached at each node to move forward with-
out any control devices or operators. The purpose of the robot
is to detect voice of survivors buried in rubbles using the micro-
phones, which are also attached around the body of the robot.
However, since the vibration causes loud noise (ego-noise), the
observed voice and ego-noise must be separated for robustly de-
tecting the survivors. In [3], a novel multichannel source sep-
aration technique called independent low-rank matrix analysis
(ILRMA) [4, 5, 6] was applied to reduce ego-noise of the robot,
where ILRMA does not require any prior information, e.g., ar-
ray geometry of microphones, direction of sources, or sample
sounds of sources. To improve its performance, the utilization
of a sample sound of ego-noise for learning its timbers (spec-
tral patterns) can be considered because the sample sound of
ego-noise can easily be obtained by operating the robot in ad-
vance. For this reason, in this paper, we propose a new effective
semi-supervised algorithm based on ILRMA. The experimen-
tal analysis shows that the proposed method can outperform the
conventional methods of ego-noise reduction.

2. Ego-noise of hose-shaped rescue robot

2.1 Structure of robot and disposition of ego-noise
The hose-shaped rescue robot consists of a hose for the axis

and ciliary tape wrapped around it; it moves forward slowly
against the direction of the cilia by vibrating the ciliary tape
with vibration motors. A camera and a lighting are attached
to the tip of the robot, in addition to an inertial measurement
unit, microphones, and speakers attached along the length of

Vibration motor

Microphone

Figure 1: Hose-shaped rescue robot.

the robot. According to the operation principle of the robot,
very loud ego-noise is always mixed into the microphones. The
main factors for the ego-noise are considered to be the vibration
sound generated by the vibration motors and fricative sound. In
an actual disaster site, the voice of a survivor seeking help is not
loud enough to capture, and it is fainter than the ego-noise. To
capture the voice in such a situation, it is necessary to separate
the voice from the recorded noisy sound.

2.2 Conventional method for ego-noise reduction

2.2.1 Ego-noise reduction based on blind source separation

The most popular and reliable approach for audio source sep-
aration using microphone array is a blind source separation
(BSS) technique [7, 8, 9], which does not require any infor-
mation about the locations of microphones and sources. The
assumption in BSS is valid for the hose-shape rescue robot be-
cause relative positions of the microphones (array geometry)
can be changed depending on posture of the robot and the lo-
cation of an observed voice is also unknown. In [3], a novel
BSS technique, ILRMA [4, 5, 6], is applied to the observed
multichannel signal. ILRMA assumes both statistical indepen-
dence between sources and low-rank structure of each source in
time-frequency domain and separates the sources in a fully blind
manner, which will be introduced in the following sections.

2.2.2 Formulation in BSS

Let both the numbers of sources and microphones be M . The
complex-valued source, observed, and separated signals in each
time-frequency slot are defined as follows:

sij = (sij,1, · · · , sij,m, · · · , sij,M )t, (1)
xij = (xij,1, · · · , xij,m, · · · , xij,M )t, (2)
yij = (yij,1, · · · , yij,m, · · · , yij,M )t, (3)

where 1 ≤ i ≤ I (i ∈ N) is the index of frequency bins,
1 ≤ j ≤ J (j ∈ N) is the index of time frames, 1 ≤ m ≤
M (m ∈ N) is the index of sources and channels, and t denotes
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the vector or matrix transpose. When the mixing system is time-
invariant and the reverberation time is much shorter than the
window length used in short-time Fourier transform (STFT), the
following approximated mixture becomes valid:

xij = Aisij , (4)

where Ai = (ai,1 · · ·ai,M ) ∈ CM×M is a frequency-wise mix-
ing matrix and ai,m is the steering vector for each source. When
Wi = A−1

i can be defined, the separated signal yij is repre-
sented as

yij = Wixij , (5)

where Wi = (wi,1 · · ·wi,M )h ∈ CM×M is the frequency-wise
demixing matrix, wi,m is the demixing filter for each source,
and h denotes the Hermitian transpose. Note that there exists
scale ambiguity in Wi among the frequency bins. To fix the
scale of yij , a back-projection technique [10] is often applied
after the estimation of Wi.

The typical BSS algorithms including independent vector
analysis (IVA) [8, 9] and ILRMA assume (4) and (5) and es-
timate the frequency-wise demixing matrix Wi. Strictly speak-
ing, the mixing assumption (4), which is called linear time-
invariant mixing, is not valid for an observed multichannel sig-
nal by the hose-shaped rescue robot. This is because the robot
always moves very slowly, and relative locations of micro-
phones and sources are barely changing with time. However,
it is reported that BSS with assumption (4) can achieve high
separation performance for a short-time (batch) observed signal
[3], which means that the batch-wise algorithm can be used for
a long-time observation.

2.2.3 ILRMA

ILRMA is a method unifying IVA and nonnegative matrix
factorization (NMF) [11] with Itakura–Saito divergence (IS-
NMF) [12], which allows us to simultaneously model the sta-
tistical independence between sources and the low-rank source-
wise time-frequency structure. Whereas IVA employs source-
wise frequency vectors, ILRMA estimates sourcewise power
spectrograms that are approximately modeled by the NMF vari-
ables. The demixing matrix Wi and the separated signal yij

are optimized so that the spectrogram of each source tends to
be a low-rank matrix. This separation mechanism of ILRMA is
shown in Fig. 2, where Tm ∈ RI×L

≥0 and Vm ∈ RL×J
≥0 are the

basis and activation matrices (NMF variables) for the mth esti-
mated source, respectively, and 1 ≤ l ≤ L (l ∈ N) is the index
of the bases. Wi, Tm, and Vm can consistently be estimated in
a fully blind manner.

The cost function in ILRMA is defined as follows:

J =
∑
i,j,m

[
|wH

i,mxij |2∑
l til,mvlj,m

+ log
∑
l

til,mvlj,m

]
− 2J

∑
i

log | detWi|, (6)

where til,m and vlj,m are the nonnegative elements of Tm and
Vm, respectively. The rank-L matrix TmVm corresponds to the
NMF decomposition and represents an estimated model spec-
trogram of the mth source. An efficient update algorithm for all
Wi, Tm, and Vm is derived [4, 6] for ILRMA.

For the ego-noise reduction of the hose-shaped rescue robot,
we can assume that ego-noise sources contain similar spectral
patterns with repetitions, and the power spectrogram of ego-
noise sources tends to be a low-rank matrix. For this reason,
ILRMA is suitable for this task and can effectively capture the
ego-noise components to separate them [3].
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Figure 2: Separation mechanism of ILRMA.

3. Proposed method

3.1 Motivation
In this paper, similar to [3], we assume that the number of

ego-noise sources is M ′ = M − 1 and only one speech source
(survivor’s voice) is mixed in the observed noisy speech sig-
nal x(mix)

ij . Since the sample sound of ego-noise, x(noise)
ij , can

easily be obtained in advance, a semi-supervised approach for
ego-noise reduction can be considered to improve the separa-
tion performance. The simplest way to utilize such an ego-
noise sample sound x

(noise)
ij is to combine a semi-supervised

NMF algorithm [13, 14] and ILRMA as the following steps: (a)
the ego-noise sample sound x

(noise)
ij is separated by simple IL-

RMA in advance, (b) the supervised (pre-trained) basis matrix
for ego-noise, T (noise)

m′ , is obtained from the optimization result
of (a), where 1 ≤ m′ ≤ M ′ ∈ N is the index of the ego-noise
sources, and (c) we apply another ILRMA to the noisy speech
signal x(mix)

ij using the supervised basis matrix T
(noise)
m′ , where

T
(noise)
m′ is fixed and the other variables (activation matrix for

the supervised ego-noise sources, basis and activation matrices
for the unknown speech source, and Wi) are optimized, as well
as the semi-supervised NMF algorithm [13, 14]. However, this
naive semi-supervised approach may fail to fully receive bene-
fits from the sample sound of ego-noise because the scale am-
biguity in Wi among frequency bins can collapse the spectral
structures in the supervised basis matrix T

(noise)
m′ .

To cope with this problem, in this paper, we propose a new
semi-supervised algorithm based on ILRMA, which is called
basis-shared ILRMA (BS-ILRMA). The overview of the pro-
posed method is depicted in Fig. 3, where W (noise)

i ∈ CM ′×M ′

and W
(mix)
i ∈ CM×M are the demixing matrices for the ego-

noise sample signal x(noise)
ij and the observed noisy speech sig-

nal x(mix)
ij , respectively, X(noise)

m′ ∈ CI×J and Y
(noise)
m′ ∈ CI×J

show the spectrograms of m′th channel in x
(noise)
ij and y

(noise)
ij ,

respectively, X(mix)
m ∈ CI×J and Y

(mix)
m ∈ CI×J show the

spectrograms of mth channel in x
(mix)
ij and y

(mix)
ij , respectively,

an absolute symbol with dotted exponent for matrices denotes
entry-wise absolute and exponent operations, Tm′ ∈ RI×L

≥0 is
the shared basis matrix for ego-noise sources, TM ∈ RI×L

≥0 is

the unshared basis matrix for the speech source, and V
(noise)
m′ ∈

RL×J
≥0 and V

(mix)
m ∈ RL×J

≥0 are the activation matrices for

Y
(noise)
m′ and Y

(mix)
m , respectively. In this method, we employ

two ILRMAs; one is applied to the ego-noise sample sound
x
(noise)
ij to estimate W

(noise)
i and y

(noise)
ij , and the other one is

applied to the noisy speech signal x(mix)
ij to estimate W

(mix)
i

and y
(mix)
ij . The important point is that the basis matrices for

ego-noise sources, Tm′ , are shared between these two ILRMAs,
and all the variables in these models are simultaneously opti-
mized. Since the shared basis matrices Tm′ must represent the
similar spectra in both x

(noise)
ij and x

(mix)
ij , the ego-noise spec-

tral patterns will be captured by Tm′ , and the other basis ma-
trix TM will consequently represent spectral patterns of the rest
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Figure 3: Overview of BS-ILRMA, where upper and lower
models are simultaneously optimized.

source, i.e., the target speech. Thus, we expect that the sepa-
rated signals y

(mix)
1 , · · · ,y(mix)

M ′ are corresponding to the ego-
noise sources in x

(mix)
ij , and the other separated signal y(mix)

M

is corresponding to the target speech source in x
(mix)
ij . Even if

the scale ambiguities in W
(noise)
i and W

(mix)
i exist, this basis

sharing indirectly improves the estimation accuracy of spectral
patterns of ego-noise and speech sources, resulting in more ac-
curate source separation.

3.2 Cost function and update rules in BS-ILRMA

We assume that the ego-noise sample sound x
(noise)
ij is ob-

tained as an M ′-channel signal and the observed noisy speech
x
(mix)
ij is an M -channel signal, which contains one speech

source. The cost function of BS-ILRMA is defined as the sum
of two costs of ILRMA as follows:

L =
1

M ′


M ′∑

m′=1

∑
i,j

[
|y(noise)ij,m′ |2∑
l til,m′v

(noise)
lj,m′

+ log
∑
l

til,m′v
(noise)
lj,m′

]

−2J
∑
i

log | detW (noise)
i |

}

+
1

M


M ′∑

m′=1

∑
i,j

[
|y(mix)

ij,m′ |2∑
l til,m′v

(mix)
lj,m′

+ log
∑
l

til,m′v
(mix)
lj,m′

]

+
∑
i,j

[
|y(mix)

ij,M |2∑
l til,Mv

(mix)
lj,M

+ log
∑
l

til,Mv
(mix)
lj,M

]

−2J
∑
i

log | detW (mix)
i |

}
, (7)

where y
(noise)
ij,m′ = w

(noise)
i,m′

H
x
(noise)
i,j and y

(mix)
ij,m′ =

w
(mix)
i,m′

H
x
(mix)
i,j are the elements of Y

(noise)
m′ and Y

(mix)
m′ ,

til,m′ and til,M are the elements of Tm′ and TM , v(noise)lj,m′ and

v
(mix)
lj,m are the elements of V

(noise)
m′ and V

(mix)
m , and w

(noise)
i,m′

and w
(mix)
i,m are the row vectors of W (noise)

i and W
(mix)
i .

The update rules of unshared parameters, namely, W (noise)
i ,

W
(mix)
i , TM , V (noise)

m′ , and V
(mix)
m are the same as those in

[4, 6]. In this paper, we only derive the update rule of the shared
bases til,m′ . Since it is difficult to directly minimize (7) w.r.t.
til,m′ , we design a majorization function of (7) and minimize it.
Since the first and fourth terms in (7) are convex functions for
til,m′ , we apply Jensen’s inequality to them for obtaining their
upper bound functions using an auxiliary variable α

(∗)
ij,m′l ≥ 0

that satisfies
∑

l α
(∗)
ij,m′l = 1:

1∑
l til,m′v

(∗)
lj,m′

≤
∑
l

α
(∗)
ij,m′l

2

til,m′v
(∗)
lj,m′

, (8)

where ∗ = {noise,mix}. Also, the second and fifth terms in (7)
are concave functions, and we apply the tangent line inequality
to them using an auxiliary variable c

(∗)
ij,m′ ≥ 0 as

log
∑
l

til,m′v
(∗)
lj,m′

≤ 1

c
(∗)
ij,m′

(∑
l

til,m′v
(∗)
lj,m′ − c

(∗)
ij,m′

)
+ log c

(∗)
ij,m′ . (9)

The equality of (9) and (10) holds if and only if the auxiliary
variables are set as follows:

α
(∗)
ij,m′l =

til,m′v
(∗)
lj,m′∑

l′ til′,m′v
(∗)
l′j,m′

, (10)

c
(∗)
ij,m′ =

∑
l

til,m′v
(∗)
lj,m′ . (11)

We can obtain the majorization function of (7) using (8) and (9)
as

L ≤L+

c
=
∑
i,j,m′

[
1

M ′

(∑
l

|y(noise)ij,m′ |2α(noise)
ij,m′l

til,m′v
(noise)
lj,m′

+

∑
l til,m′v

(noise)
lj,m′

c
(noise)
ij,m′

)

+
1

M

(∑
l

|y(mix)
ij,m′ |2α(mix)

ij,m′l

til,m′v
(mix)
lj,m′

+

∑
l til,m′v

(mix)
lj,m′

c
(mix)
ij,m′

)]
,

(12)

where c
= denotes equality up to a constant term. The update

rule of til,m′ is derived by setting the gradient of L+ to zero and
substituting (10) and (11), as

Tm′ ←

Tm′⊗

√√√√√√ 1
M ′

(
|Y (noise)

m′ |
.2

G
(noise)

m′
.2

)
V

(noise)
m′

T
+ 1

M

(
|Y (mix)

m′ |
.2

G
(mix)

m′
.2

)
V

(mix)
m′

T

1
M ′G

(noise)
m′

.−1
V

(noise)
m′

T
+ 1

MG
(mix)
m′

.−1
V

(mix)
m′

T
,

(13)

where ⊗ and the quotient symbol for matrices denote element-
wise multiplication and division, and G

(∗)
m′ = Tm′V

(∗)
m′ .

4. Experimental evaluation
4.1 Conditions

We compared the ego-noise reduction performance of sim-
ple unsupervised ILRMA, naive semi-supervised ILRMA (SS-
ILRMA) described in Sect. 3.1, and proposed semi-supervised
BS-ILRMA using the actual recorded signals by the hose-
shaped rescue robot. The number of microphones used in the
experiment was M = 8, namely, we assumed that M ′ =
M − 1 = 7 ego-noise sources are mixed in the observed noisy
speech signal x

(mix)
ij . To produce the ego-noise sample and

the observed mixture signals, the robot was driven in a simu-
lated disaster site, and the speech signal was convolved with
impulse responses from a survivor to each microphone with
SNR = −20 dB. We used the signal-to-distortion ratio (SDR)
[15] as an evaluation measure, which indicates total quality of
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Table 1: Experimental conditions
Sampling frequency 16 kHz

Window length in STFT 2048 samples
Window shift length in STFT 512 samples

Number of bases in each bases matrix L=5,10 ,15
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Figure 4: SDR improvements of different number of bases.

source separation. Table 1 shows the other experimental condi-
tions.

In this experiment, we used two semi-supervised situations
related to a sample sound of ego-noise: one is a closed test us-
ing the same ego-noise signal in both the sample sound and the
observed signals, and the other one is an open test using the dif-
ferent ego-noise sample recorded by a different posture of the
same robot. The signal length of the ego-noise sample and ob-
served signals was five seconds.

4.2 Results
4.2.1 Optimal number of NMF bases for BS-ILRMA

We first investigate the optimal number of bases L for the ego-
noise reduction with BS-ILRMA. Figure 4 shows the result of
BS-ILRMA with various numbers of bases, where the horizon-
tal axis indicates the number of iterations in optimization. We
can confirm that BS-ILRMA with L = 5 achieves the best sep-
aration performance in open test. This fact means that when we
increase the number of bases, shared ego-noise basis matrices
have a risk to represent not only the ego-noise components but
also the speech components.

4.2.2 Comparison with conventional and proposed methods

Figure 5 shows the comparison of SDR improvements
achieved by ILRMA, SS-ILRMA, and BS-ILRMA, where the
number of bases L was set to five for all the methods. From
this result, the proposed method outperforms the other methods
for both closed and open tests. As described in Sect. 3.1, SS-
ILRMA cannot achieve better separation performance after sev-
eral iterations because the scale ambiguity collapses the struc-
tures of supervised bases during the iterative optimization. In
contrast, the separation result of BS-ILRMA becomes higher
along with the iterative optimization.

5. Conclusions

In this paper, we proposed a novel semi-supervised extension
of ILRMA that shares the NMF basis between sample and ob-
served signals. This method is applied to the ego-noise reduc-
tion task for the hose-shaped rescue robot. The experimental
results show the efficacy of the proposed method.
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