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Abstract

We examined blind source separation (BSS) with low latency
in cars. In frequency-domain BSS, a buffer delay associ-
ated with a short-time Fourier transform (STFT) is inevitable.
Thus, we need to shorten the STFT frame length. However,
shortening of the STFT frame degrades the source separation
performance because an assumption of instantaneous mixture
model does not hold. On a similar research, the method of
formulating a system for separating highly reverberant mix-
ture signals using a frequency-domain convolutive mixture
model has recently proposed. We paid attention to the method
and considered an application of reducing the delay depen-
dent on the STFT frame. We evaluated the effectiveness of
the method in cars under a short reverberant condition. Ex-
perimental results confirmed that the method not only main-
tained its performance but also reduced the delay dependent
on the STFT frame.

1. Introduction

Information and communication technology (ICT) is de-
veloping rapidly. Recently, several studies of the applica-
tion of ICT in in-car communication (ICC) have been car-
ried out [1, 2]. Owing to the background noise and seat ar-
rangement, communication within a vehicle is difficult. In
particular, backseat passengers feel uncomfortable listening
to the sound from the speaker located near the driver seat.
The situation can be improved by enhancing particular au-
dio signals and transmitting them without delay. One of the
common approaches to enhancing particular audio signals is
blind source separation (BSS). BSS is a technique for separat-
ing individual source signals from recorded microphone array
inputs without any prior information about source signals.

The most commonly used approach for overdetermined
BSS (where the number of microphones is larger than that of
sources) is independent component analysis (ICA) [3], which
achieves source separation by assuming the statistical inde-
pendence between the sources. Recently, a number of meth-
ods based on frequency-domain ICA have been developed
[4, 5, 6], which provide flexibility in utilizing various models
for the time—frequency representations of source signals and

array responses. For example, independent low-rank matrix
analysis (ILRMA) [6] adopts the non-negative matrix factor-
ization (NMF) concept [7, 8] for source spectrogram model-
ing, which approximates each source power spectrogram as
a linear combination of a limited set of spectral templates
scaled by magnitudes varying with time.

In methods based on frequency-domain, there is a delay de-
pendent on the STFT frame. This delay is the time for waiting
for new signals so that the STFT frame buffer is filled. A high
processing CPU and an efficient algorithm can not reduce the
delay dependent on the STFT frame. Thus, in low latency
methods based on frequency-domain, we need to shorten the
STFT frame length. However, frequency-domain instanta-
neous mixture model such as ILRMA has an assumption that
source separation performance degrades when the reverbera-
tion time is longer than the STFT frame length. Generally, the
reverberation time in cars is short, but we can not ignore the
reverberation problem if we shorten the STFT frame length.
Although we can solve this problem by increasing the STFT
frame length, it is difficult to separate sources with low la-
tency owing to the delay dependent on the STFT frame.

On a similar research, the idea of formulating a system
for separating highly reverberant mixture signals using a
frequency-domain convolutive mixture model has recently
been adopted in ILRMA [9]. We refer to this method as
convolutive ILRMA, which has been shown to be effective
for separating sound signals when the reverberation time is
longer than the STFT frame length. In this paper, we applied
convolutive ILRMA to low latency BSS in cars, where the
reverberation time is shorter than the STFT frame length.

2. Frequency-domain convolutive ILRMA

2.1 Formulation based on frequency-domain instanta-
neous mixture model

We consider a determined situation where J source signals
are observed by I microphones (J = I). Let z;(f,n) and
sj(f,n) denote the STFT coefficients of the signal observed
at the ith microphone and the jth source signal, where f and
n are the frequency and time indices, respectively.
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With the frequency-domain instantaneous mixture model,
the relationship between the observed signals x(f,n) =

[z1(f,n),...,zr(f,n)]" € C! and source signals s(f,n) =
[s1(f,n),...,s1(f,n)]" € C! is written as
s(f,n) = WH(f)z(f,n), (0
W (f) = [wi(f),...,wr(f)] € C™, 2

where WH (f) is the separation matrix and (-) denotes the
Hermitian transpose.
Let us assume that s;(f,n) independently follows a

zero-mean complex Gaussian distribution with variance

vj(fa ’I'L) = E[‘Sj(fa n)|2]’
Sj(fv TL) ~ NC(sj(fv TL)‘O, vj(fv n))

We also assume s, ( f,n) to be independent from one source
to the others. s(f,n) thus follows

S(f’ Tl) ~ NC(S(f, n)|07 V(f7 ﬂ)),

where V'(f,n) is a diagonal matrix with diagonal entries
vi(f,n),...,vr(f,n). We further assume v;(f,n) as

=3 )

k=1

3)

“4)

®)

qu

where h; ,(f) = 0 is the (4, k) element of the basis matrix
and u; ,(n) 2 0is the (7, k) element of the activation ma-
trix for the jth source. k = 1, ..., K are the numbers of the
basis. In these assumptions, the negative log-likelihood of
the parameters V = {H,U} with H = {h; x(f)}; % ¢ and
U = {ujx(n)}jkn and W = {WH(f)}; given the ob-
served mixture signals X = {x;(f,n)}; r.» is given as

) (O]
where = denotes equality up to constant terms.

This instantaneous formulation can not shorten the STFT
frame length because source separation performance de-
grades when the reverberation time is longer than the STFT
frame length.

I(W,V|X) = —2N log|det WH(f)]

lwH (fy(f,n)?
+ log v;(f,n) + ———"—~——
;( v;(f,m)

2.2 Formulation based on frequency-domain convolutive
mixture model

The idea of formulating a system for separating highly re-
verberant mixture signals using a frequency-domain convolu-
tive mixture model has been proposed [9, 0] and shown to be
effective for separating under the condition where the STFT

frame length is not longer than the reverberation time. The re-
lationship between the observed signals x(f,n) and sources
s(f,n) is written as

ZWH (f,n))a(f,n—n'), (7)
n’=0
where W(f,n'), 0 < n’ < N’ are the coefficient

matrices of size I x I. N’ is the length of the filter
{WH(f n")} 0. WH(F,0) is equivalent to a separation
matrix of the instantaneous mixture model. When WH (f,0)
is invertible, the dereverberated mixture signal y(f,n) =
[yi(f,n),...,yr(f,n)]" € C! and the source signal s(f,n)
can be written as

y(fv _va ZDHfa fan_n) (8)
n/=1

s(f,n) = WH(f,0)y(f,n), ©)

where DY (f,n') = —(WH(f,0))""WH(f,n'), 1 <

n’ < N’. Equation (8) can be seen as a dereverbera-

tion process of the observed mixture signal (f,n). D =
{D®(f,n")} . represents a dereverberation filter whose
length is N’. Therefore, the negative log-likelihood of in-
terest is a function of the dereverberation filter D, separation
matrices W, and spectral parameters V :

Z(D,W,V|X) = —2N log|det WH(f)|
[w(Hy(f,n)?
+f,7zm<1°g”j(f’”> )
(10)

2.3 Optimization process

We describe the optimization algorithm in this subsection.
The objective function (10) is iteratively decreased using a
coordinate descent method in which each iteration comprises
the following three minimization steps:

V « argminZ(D, W, V| X), (11)
Vv

W < argmin Z(D, W, V| X), (12)
w

D + argminZ(D, W, V| X). (13)
D

The update rules of minimizing V are written as [8] ,

3 185 (fm) 2k (n)o; 2 (f,m)
3 ugk(n)oy H(fin)

s lsi (£,m) 2Ry 6 (F)v; 2 (f,m)
S phik(Hv;(f,n) .

by (f) = i (f) ) (14

uj k() = ujxk(n) (15)
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The update rules of W can easily be derived on the basis
of the IP method [4],

w;(f) — (WH(F)5,() e,
wi(f) ¢
Vw5 (fw;(f)

(16)

a7

where X/, (f) = (1/N) 3, y(f,n)y™ (f,n)/v;(f,n)
and e; denotes the jth column of the I x I identity matrix.
To obtain the update rules for D, we vectorize D(f,n’) as

d(f) = vec({D(f,n")})
= [d-{(ﬁ 1)? ) d}-(ﬁ 1)7 d-{(.ﬂ 2)7 ) d}-(fv 2)7
L LdNAND, L LdY (N T e as)

where d;(f,n’) is the ith column of D(f,n’). The update
rules for d*(f) are given as

1
d*(f) — (Z XH(fa n)zw/v(f,n)X(fv TL))

X (ZXH(fan)zltz/v(f,'rL)m(f,n))7 (19)

w; (Hwi(f)
25
complex conjugate of (-). We write X (f,n) as

where X, /y(fn) = and (-)* represents the

X(fn)=Ioa (fn—1),I02 (fn-2)...,
IT@a"(f,n—N')]eC*IN, (20)
Here, I stands for the identity matrix of size I x I and ®
stands for the Kronecker product.
Therefore, the proposed algorithm is summarized as fol-
lows:
1. Initialize V, W, and D.
2. Repeat the following updates for each j, f, n until con-
vergence.
(a) Update h; i (f) and u; (n) using (14), (15).
(b) Update w;(f) using (16), (17).
(c) Update d*(f) using (19).

2.4 Application of convolutive ILRMA to ICC

ICC systems must fulfill strict delay constraints to ensure
that the amplified speech is not perceived as a distinguishable
echo. To realize a comfortable situation, mouth-to-ear delays
should be maintained below 12 ms [2]. Thus, it is necessary
for practical applications to shorten the STFT frame length.
However, shortening of the STFT frame degrades the source

separation performance because the assumption of instanta-
neous mixture model does not hold.

On the similar research in [9], convolutive ILRMA has
been shown to be effective for separating sound signals un-
der the condition where the reverberation time is longer than
the STFT frame length. We paid attention to this advantage
and considered an application of reducing the delay depen-
dent on the STFT frame. In this paper, we applied convolu-
tive ILRMA to low latency BSS in cars and investigated the
performance in relation to the delay dependent on the STFT
frame and the dereverberation filter length.

3. Experiments

To evaluate the effectiveness of convolutive ILRMA ap-
plied in cars, we conducted a source separation experiment.
To investigate the improvement in the performance under the
condition where the reverberation time is longer than the
STFT frame length, we compared the performance in rela-
tion to the STFT frame length L and the dereverberation filter
length N’. We used speech signals convolved with impulse
responses recorded in a car. We took the average of the signal-
to-distortion ratios (SDR) as the evaluation criteria [11].

3.1 Experimental conditions

In this experiment, we used clean data from a total of
10 speakers (6 male speakers and 4 female) and all 503
phoneme-balanced sentences contained in set B of the ATR
digital speech database. By selecting two different speakers
from the data set randomly, we obtained 10 patterns of source
signals. We generated observed signals from the source sig-
nals by convoluting the impulse response recorded in a car.
We resampled the source signals and the observed signals at
8 kHz. We measured the impulse responses using a time-
stretched pulse in a car. The recording environment is shown
in Fig. 1. We set one speaker at the driver seat, another
speaker at a passenger seat, and microphones at a map lamp
in the car. The reverberation time T in the car was 58 ms. In
the experiment, we set L to {2, 4, 8, 16, 32} ms and evaluated
each SDR. We set N’ in the range 0 < N’ < 10 because of
a trade-off between N’ and computational time of updating
(19). N' =0 is equivalent to separation in the instantaneous
method. Moreover, we evaluated SDR at L = 128 ms and
N’ =0 as baseline performance that satisfy the assumption of
instantaneous mixture model. We set the STFT shift length
to one-quarter of the STFT frame length. In [0], it was con-
firmed that ILRMA cannot achieve a good performance in
the separation of speech signals when the number of bases is
large. Thus, we set the number of bases to 1. We ran convo-
lutive ILRMA for 50 iterations.
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Figure 1: Sound source and microphone layout in experiment
3.2 Results

Figure 2 shows the separation performance at each L. As
the results show, convolutive ILRMA improved SDR at any L
by choosing appropriate N’. Moreover, the results at L > 4
ms outperformed the baseline method at L = 128 ms and N’
= (0. Therefore, we confirmed that convolutive ILRMA not
only maintained its performance but also reduced the delay
dependent on the STFT frame.

4. Conclusion

In this paper, we evaluated convolutive ILRMA (updating
the separation matrices, the spectral parameters and the dere-
verberation filter iteratively) in cars. We conducted experi-
ments in cars. The result of the experiments confirmed that
the dereverberation filter is effective under a short reverber-
ant condition. Therefore, convolutive ILRMA not only main-
tained its performance but also reduced the delay dependent
on the STFT frame in cars.
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