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Abstract: In this paper, we propose a new method for evaluating the separation and dereverberation
performance of a convolutive blind source separation (BSS) system, and investigate a separating
system obtained by employing frequency domain BSS based on independent component analysis
(ICA). As a result, we reveal the acoustical characteristics of the frequency domain BSS for
convolutive mixture of speech signals. We show that the separating system removes the direct sound
of a jammer signal even when the frame length is relatively short, and it also reduces the reverberation
of the jammer according to the frame length. We also confirm that the reverberation of the target is not
reduced. Moreover, we propose a technique, suggested by the experimental results, for improving the
quality of the separated signals by removing pre-echo noise.
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1. INTRODUCTION

Blind source separation (BSS) is a technique for

estimating original source signals using only observed

mixtures of signals. The BSS of audio signals has a wide

range of applications including noise robust speech

recognition, hands-free telecommunication systems and

high-quality hearing aid equipment.

Independent component analysis (ICA) is a typical BSS

method that is effective for instantaneous (non-convolu-

tive) mixtures [1–3], and many attempts have been made to

apply BSS to signals mixed in convolutive environments

[4–8]. However, it has also been pointed out that an

adequate performance level cannot be obtained in environ-

ments with long reverberation where the filter lengths of

the mixing and separating systems are of the order of

thousands or higher [9–11].

Although there have been a large number of studies of

BSS, little attention has been paid to the physical and

acoustical characteristics of the separating system, since

ICA was originally a statistical method. It is useful to

investigate the acoustical nature of BSS with a view to

improving separation performance, and some researchers

have begun to investigate and utilize its physical properties.

The effect of early reflection and reverberation on BSS is

investigated in [12]. The relationship between BSS and

beamformers is utilized to achieve a better performance in

[13,14]. Still only a few physical characteristics is known.

In this paper, we propose a method for analyzing a

separating system obtained by frequency domain BSS for

convolutive mixture of speech signals from an acoustical

viewpoint. We measure the impulse responses of straight

and cross paths of the separating system, and examine the

separation performance in detail. We focus our attention on

the power of (1) the direct sound of the target signal, (2) the

reverberation of the target signal, (3) the direct sound of the

jammer signal, and (4) the reverberation of the jammer

signal, and evaluate each power separately.

As a result, we reveal the acoustical characteristics of

frequency domain BSS based on ICA. We show that the

separating system removes the direct sound of the jammer

signal even when the frame length is relatively short, and it

also reduces the reverberation of the jammer according to

the frame length. We also confirm that the reverberation of

the target is not reduced as expected. Moreover, we

propose a technique, suggested by the experimental results,

for improving the quality of the separated signals by

removing pre-echo noise.

The inability to achieve target dereverberation can be

predicted and explained by the ambiguity of a linear�e-mail: ryo@cslab.kecl.ntt.co.jp
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transformation of BSS [15,16]. However other character-

istics were unknown until we revealed them by means of

experiments. Our results also provided experimental con-

firmation of the equivalence between BSS and adaptive

beamformers (ABF) which is discussed in [17,18].

The paper is organized as follows. In the next section,

we summarize the algorithm of frequency domain BSS for

convolutive mixtures. In Section 3, we define performance

measurement factors using impulse responses and their

power. Section 4 presents experimental results obtained

using speech signals. In Section 5, we discuss the

acoustical characteristics of the BSS system obtained by

frequency domain ICA. Section 6 concludes this paper.

2. BSS OF CONVOLUTIVE MIXTURES

2.1. Frequency Domain ICA

When the source signals are siðtÞ ð1 � i � NÞ, the

signals observed by microphone j are xjðtÞ ð1 � j � MÞ,
and the separated signals are ykðtÞ ð1 � k � NÞ, the BSS

model can be described by the following equations:

xjðtÞ ¼
XN

i¼1

ðhji � siÞðtÞ ð1Þ

ykðtÞ ¼
XM

j¼1

ðwkj � xjÞðtÞ ð2Þ

where hji is the impulse response from source i to

microphone j, wkj is the coefficient when we assume that

a separating system is used as FIR filters, and � denotes the

convolution operator.

A convolutive mixture in the time domain corresponds

to instantaneous mixtures in the frequency domain. There-

fore, we can apply an ordinary ICA algorithm in the

frequency domain to solve a BSS problem in a reverberant

environment. Using a short-time discrete Fourier transform

for (1), the model is approximated as:

Xð!; nÞ ¼ Hð!ÞSð!; nÞ; ð3Þ

where ! denotes the frequency, and n represents the frame

index. The separating process can be formulated in each

frequency bin ! as:

Yð!; nÞ ¼ Wð!ÞXð!; nÞ ð4Þ
¼ Wð!ÞHð!ÞSð!; nÞ; ð5Þ

where Sð!; nÞ ¼ ½S1ð!; nÞ; . . . ; SNð!; nÞ�T is the source

signal in frequency bin !, Xð!; nÞ ¼ ½X1ð!; nÞ; . . . ;
XMð!; nÞ�T denotes the observed signals, Yð!; nÞ ¼
½Y1ð!; nÞ; . . . ;YNð!; nÞ�T is the estimated source signal,

and Wð!Þ represents the separating matrix. Wð!Þ is

determined so that Yið!; nÞ and Yjð!; nÞ become mutually

independent (i 6¼ j).

To calculate the separating matrix W , we use an

optimization algorithm based on the minimization of the

mutual information of Y . The optimal W is obtained by the

following iterative equation using the natural gradient

approach [19]:

W iþ1 ¼ W i þ �½I � h�ðYÞYHi�W i; ð6Þ

where i is an index for the iteration, I is an identity matrix,

� is a step size parameter, h�i denotes the averaging

operator, and �ð�Þ is a nonlinear function. Because the

signals are complex valued in the frequency domain, we

use a polar-coordinated based nonlinear function [20]:

�ðYÞ ¼ tanhðg � absðYÞÞe|argðYÞ; ð7Þ

where g is a gain parameter to control the nonlinearity.

The above calculations are carried out separately for

each frequency.

2.2. Permutation and Scaling Problem

Once we have solved ICA for all frequencies, we need

to solve the permutation and scaling problems. Since we

are handling signals with complex values, the scaling

factors are also complex values. Thus the scaling can be

divided into phase scaling and amplitude scaling.

We use the method described in [13] to solve the

permutation and phase scaling problems. When we

consider a separating system as a microphone array, we

can write directivity patterns for every frequency bin. The

permutation problem is solved so that the null directions

are aligned. We can estimate the directions of the source

signals from the aligned directivity patterns, and the phase

scaling problem is solved so that the phase response of the

estimated source direction becomes zero.

The amplitude scaling problem is solved by the method

reported in [21] with a slight modification. We calculate

the inverse of the separating matrices Wð!Þ�1, and decide

the scaling factors so that the norms of each column of

Wð!Þ�1 become uniform.

In the following sections, we consider a two-input, two-

output convolutive BSS problem, i.e., N ¼ M ¼ 2 (Fig. 1).

3. EVALUATION METHOD

The BSS performance is usually evaluated by the signal

to interference ratio (SIR), which is defined as the ratio of a

Fig. 1 Model of BSS system.
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target-originated signal to a jammer-originated signal

[9,10,22]. This measure is reasonable for evaluating the

separation performance, but unsuitable for evaluating the

dereverberation performance because of its inability to

distinguish the direct sound and reverberation. Since we

wish to know the components of separated signals in detail,

i.e., the direct sound and reverberation of the target and

jammer, we adopt the following procedure.

(i) We estimate the separating matrix Wð!Þ for each

frequency.

(ii) By using IFFT, we transform the frequency domain

separating matrix Wð!Þ to time domain separating

filter wijðtÞ.
(iii) We measure four impulse responses, from s1 to y1, s1

to y2, s2 to y1, and s2 to y2.

(iv) We investigate the four impulse responses in detail

and compare them with the responses of a null

beamformer (NBF).

3.1. Definitions of Performance Measurement Factors

We evaluate the performance of the separating system

in the time domain. We consider a separated signal y1,

target signal s1, and jammer signal s2. When the target s1 is

an impulse �ðtÞ and the jammer s2 ¼ 0, we represent the

observed signal x1 as x1s1 [Fig. 2(a)], and y1 as y1s1 [Fig.

2(b)]. Similarly, when s1 ¼ 0 and s2 ¼ �ðtÞ, we represent x1
as x1s2, and y1 as y1s2 [Fig. 2(c)]. x1s1 is an impulse response

from s1 to x1 caused by the mixing system H, and y1s1 is an

impulse response from s1 to y1 caused by the whole system

W �H. These values are calculated by using hij and wij as

follows.

x1s1 ¼ h11 ð8Þ

x1s2 ¼ h12 ð9Þ

y1s1 ¼ w11 � h11 þ w12 � h21 ð10Þ

y1s2 ¼ w11 � h12 þ w12 � h22 ð11Þ

In terms of source separation, we can consider y1s1 to be the

direct and reverberant sound of target s1, and y1s2 to be the

remaining sound of jammer s2.

To simplify the evaluation, we normalize hji so that the

power of the observed signals x1s1 and x1s2 is equal to 0 dB,

and employ the following definitions.

. PI: the power of x1s1. (normalized to 0 dB)

. PT: the power of y1s1. (scaled to 0 dB)

. PJ: the power of y1s2.

. PIR: the power of the reverberant sound in x1s1,

. PTR: the power of the reverberant sound in y1s1,

. PJR: the power of the reverberant sound in y1s2.

These are calculated as follows:

PI ¼
X1

t¼�1
jx1s1ðtÞj2; PIR ¼

X1

t¼�

jx1s1ðtÞj2 ð12Þ

PT ¼
X1

t¼�1
jy1s1ðtÞj2; PTR ¼

X1

t¼�

jy1s1ðtÞj2 ð13Þ

PJ ¼
X1

t¼�1
jy1s2ðtÞj2; PJR ¼

X1

t¼�

jy1s2ðtÞj2 ð14Þ

where � is an appropriate time between the arrival of the

direct sound and the reverberant sound, which is deter-

mined according to experimental conditions. Usually, the

impulse response in a real room consists of direct sound,

early reflection and reverberation. There are a delay and a

level difference between the direct sound and the first

reflection due to the difference between their paths. We

consider that the early reflections are included in the

reverberation, thus � is set to the time just before the arrival

of the first reflective sound. These measurement factors can

be indicated on the the power attenuation curves in Fig. 2

We also define the reduction ratio of the reverberation

of target signal RT and the reduction ratio of jammer signal

RJ as follows

RT ¼ �10 log
PTR

PIR

(dB) ð15Þ

RJ ¼ �10 log
PJ

PT

¼ �10 logPJ (dB): ð16Þ

For the analysis of the residual jammer signal in the

following section, we also define the power of the early

part of the residual jammer signal as follows:

PJE ¼
X

�1<t<�

jy1s2ðtÞj2

¼ PJ � PJR; ð17Þ

which is the total power of the remaining direct sound and

the non-causal noise called pre-echo.Fig. 2 Impulse responses of (a) observed target, (b)
straight path and (c) cross path, and their power
attenuation curves.
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4. EXPERIMENTS

In order to examine what is separated by a separating

system based on ICA, and what remains as noise, we

investigated the impulse responses of a system. In

frequency domain BSS, it has been confirmed that the

separation performance changes according to the length of

the frame [10], therefore we chose the frame length as a

parameter. In our experiment, the length of the filters of the

separating system was the same as the frame length.

4.1. Experimental Conditions

The layout of the room we used to measure the impulse

responses of the mixing system H is shown in Fig. 3. The

reverberation time of the room Trev was 300ms, which

corresponds to an impulse response of 2,400 taps at an

8 kHz sampling rate. We used a two-element array with an

inter-element spacing of 4 cm, which corresponds to almost

the half-wave length of the Nyquist frequency 4 kHz. This

spacing makes it possible to avoid spatial aliasing over the

whole frequency range. The speech signals arrived from

two directions, i.e., �30� and 40�. The contribution of the

direct sound of h11 and h21 was 5.7 dB, and that of h12 and

h22 was 6.6 dB.

We carried out experiments with 42 signal source

combinations using seven sentences spoken by two male

and two female speakers selected from the ASJ continuous

speech corpus. Each of these mixed speech signals were six

seconds long. We used the entire six seconds of the mixed

data for learning according to (6).

In these experiments, we changed the frame length T

from 4 to 8,192 and investigated the performance under

each condition. The sampling rate was 8 kHz, and the

analysis window was a Hanning window. The frame shift S

was T=4.

The step size parameter � affects the convergence of

the separating system W and the separation performance.

We varied � from 0.01 to 0.5, and selected the best step

size for each frame size T . We used � ¼ 0:1 for T � 1,024,

� ¼ 0:05 for T ¼ 2,048, and � ¼ 0:02 for T � 4,096. The

gain parameter g is 1. This means that the nonlinear

function �ðYÞ ¼ e|argðYÞ. The number of iterations for (6) is

100.

4.2. Experimental Results

Figure 4(a) and (c) show examples of impulse

responses y1s1 and y1s2 of the separating system obtained

by a null beamformer (NBF) that forms a steep null

directivity pattern towards a jammer on the assumption that

the jammer’s direction is known. Figure 4(b) and (d) are

results obtained by ICA.

For the target signal, we can see that the reverberation

passes the system in both cases (NBF and ICA) in Fig. 4(a)

and (b). Figure 4(c) shows that the direct sound of the

jammer is eliminated, but the reverberation is not elimi-

nated by the NBF, as expected. By contrast, Fig. 4(d)

indicates that ICA not only eliminates the direct sound, but

also reduces the reverberation of the jammer. However, we

can also observe the appearance of non-causal noise. We

discuss this in the following section.

Figure 5 shows the relationship between the frame

length T and the reduction ratios RT and RJ defined by (15)

and (16). Figure 5(a) shows results provided by ICA. For

the sake of comparison, the NBF performance is shown in

Fig. 5(b).

Note that these results are measured by using the power

of the impulse responses, and differ from the noise

reduction rate (NRR) [10] measured by using a speech

signal with a highly colored spectrum. Our results indicate

larger values than the NRR.

Fig. 3 Layout of the room used for the experiments.
Reverberation time Trev ¼ 300ms.

Fig. 4 Target and jammer impulse responses of NBF
and ICA (T = 2,048, Trev ¼ 300ms).
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Figure 6 shows the power of the residual jammer signal

PJ and its decomposition into the early part PJE and the

residual reverberation PJR. We used � ¼ 2ms (16 taps).

Figure 6(a) is the result of ICA and Fig. 6(b) is the result of

NBF.

5. DISCUSSION

5.1. Jammer Reduction and Target Dereverberation

First, we discuss the jammer reduction ratio RJ in Fig. 5.

When T � 128, the reduction performance of BSS is as

poor as that of NBF, and when 256 � T � 2,048, the

reduction ratio increases. When T ¼ 2,048, the average RJ

value is 16.7 dB. This is much greater than the contribution

of the direct sound (6.6 dB). This means that the separating

system obtained by ICA can reduce not only the direct

sound of the jammer but also its reverberant sound.

However, as we describe later, the reverberation is not

eliminated completely.

By contrast, the reduction ratio of the reverberation of

target RT is low, and does not vary throughout the entire

frame length T . This means that dereverberation was not

achieved for the target signal. From these results, we can

conclude that W is not the approximation of the inverse

system of H, but a filter that can eliminate the jammer

signal.

It has been pointed out that early reflections of the

jammer signal are removed by BSS [12]. We obtained a

slightly stronger result that not only the early reflections

but also the reverberation of the jammer signal is reduced

to some degree. The reason for this is that frequency

domain BSS works like two sets of frequency domain

adaptive microphone arrays, i.e., adaptive beamformers

(ABF), which adapt to minimize the jammer signal

including reverberation. Figure 7 shows the directivity

patterns of NBF, the separating system obtained by ICA,

and ABF. ICA and ABF provide duller directivity than

NBF, thus they can remove not only the direct sound of the

jammer but also its reverberation. A theoretical discussion

of the relationship between frequency domain BSS using

second order statistics and ABF can be found in [17].

5.2. Analysis of Residual Jammer Signal

Next, we examine the power of the residual jammer

signal PJ in detail. Figure 6 shows the power of the residual

jammer signal PJ and its decomposition to PJR and PJE. PJR

is the contribution of the residual reverberation. PJE is the

contribution of the early part of the residual jammer signal,

which consists of the pre-echo noise and the residual direct

sound of the jammer signal.

Figure 8 shows the jammer impulse responses for

various frame lengths. From Figs. 6 and 8, we can derive

following consideration.

When the frame length is too short, the direct sound

cannot be removed by the separating system, and it

Fig. 5 Relationship between frame length and reduction
ratios (Trev ¼ 300ms). The target reduction ratio RT

and the jammer reduction ratio are defined by (15) and
(16). Fig. 6 Analysis of the power of the residual jammer

signal (Trev ¼ 300ms). PJ is the power of the residual
jammer signal, which is decomposed into the early part
PJE and the residual reverberation PJR.
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degrades the separation performance. When 64 � T �
1,024, the direct sound is removed well, however the filter

is much shorter than the length of the reverberation;

accordingly, any reverberation that is longer than the filter

cannot be reduced at all.

As the frame length becomes longer, the number of

coefficients to be estimated increases while the number of

data samples for learning in each frequency bin decreases,

since we are using finite length data of 6 seconds. For

example, when T ¼ 8,192 and S ¼ T=4, each frequency

bin has only 24 data samples and this is insufficient for the

statistical estimation. As a result, the amount of estimation

errors increases.

Moreover, the pre-echo noise grows, and this causes

the performance to decline. Furthermore, the noise dam-

ages the target signal when T is too long (Fig. 9). Thus,

there is a tradeoff between coverage of reverberation and

estimation errors.

5.3. Eliminating Pre-echo Noise

The pre-echo noise is mainly caused by the estimation

errors in the non-causal part of the unmixing filters.

Therefore, if we allow a delay in proportion to the frame

length (half of the frame length in the above experiments),

the noise increases as the frame length become longer. The

pre-echo noise can be removed by eliminating the non-

causal part of the separating filters. However, this prevents

the separating system from removing the direct sound of

the jammer signal (Fig. 10), and degrades the separation

performance.

One solution is to limit the non-causal part of the

separating filters to an appropriate length instead of

Fig. 7 Directivity patterns of (a) NBF, (b) separating
system obtained by ICA, and (c)ABF (T = 2,048,
Trev ¼ 300ms).

Fig. 8 Jammer impulse responses of BSS system.

Fig. 9 Target impulse response of BSS system damaged
by pre-echo noise.
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eliminating it completely. The lower bound of the filter

length, which can remove direct sound, is much shorter

than the filter length yielding the best separation perform-

ance. Based on PJE in Fig. 6, the proper length of the non-

causal part is around 128 taps (corresponding to 16ms)

under our experimental conditions. Figure 11 shows the

jammer impulse response when the non-causal part of the

filter is limited to 128 taps. The pre-echo noise and the

direct sound are both removed. Although we just cut off the

separating filters with a rectangular window in this experi-

ment, we did not observed any deterioration on the auditory

quality of the separated signals in our preliminary listening

test. From a psychoacoustic viewpoint, the pre-echo of

16ms is relatively allowable, because a human hearing

system has premasking effect of about 20ms [23].

5.4. Applicability of Evaluation Method

We have applied our evaluation method to a BSS

algorithm with a different non-linear function � and

different scaling method in [11], and have confirmed a

similar result to that reported in this paper. We have also

carried out experiments with changing the locations of

source signals, and have obtained similar results.

BSS with target dereverberation is still an open

problem, and many algorithms will be designed in the

future. Some of them may realize a deconvolution of the

target signal, and then their characteristics about the target

dereverberation will be different from our results. How-

ever, our evaluation method can be used for investigating

the characteristics of their performance.

Our method is not limited to frequency domain BSS,

but it can be applied to other kinds of BSS algorithms,

including time domain BSS. It is helpful in investigating

the acoustical characteristics of BSS in a reverberant

environment.

6. CONCLUSION

We investigated the performance of a separating

system obtained by frequency domain BSS based on ICA

using the impulse responses of target and jammer signals.

As a result, we found the acoustical characteristics of the

separating system. The separating system eliminates the

direct sound of the jammer signal even when the frame

length is relatively short, and it also reduces the reverber-

ation according to the frame length, while the reverberation

of the target is not reduced. The performance of the target

dereverberation does not depend on the frame length and is

as poor as that of an NBF. Our results provide experimental

confirmation of the equivalence between BSS and ABF.

The jammer reduction performance improves as the

frame length increases. However, an overly long frame

length has a detrimental effect on the performance due to

accumulating errors, and the separated signals are damaged

by pre-echo noise. To reduce the pre-echo noise, it is

effective to shorten the non-causal part of the separating

filters.

Our analysis method is useful for investigating the

acoustical characteristics of BSS in a reverberant environ-

ment.
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