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Abstract

This paper presents a method for solving the permuta-
tion problem of frequency domain blind source separa-
tion (BSS) when the number of source signals is large,
and the potential source locations are omnidirectional.
We propose a combination of small and large spacing
microphone pairs with various axis directions in order
to obtain proper geometrical information for solving the
permutation problem. Interpretation of the ICA solution
by a far-field model yields DOA information. By us-
ing microphone pairs that have different axis directions,
we can estimate the DOAs robustly and without ambigu-
ity. On the other hand, interpretation of the ICA solution
by a near-field model yields information about spheres
on which the source signals exist. Experimental results
show that the proposed method can separate a mixture of
speech signals that come from various directions, even
when some come from the same direction.

1. Introduction
Blind source separation (BSS) is a technique for estimat-
ing original source signals using only observed mixtures.
When the source signals aresi(t)(i = 1, ..., N ), the sig-
nals observed by microphonej arexj(t)(j = 1, ..., M),
and the separated signals areyk(t)(k = 1, ..., N ), the
BSS model can be described as:xj(t) =

∑N
i=1(hji ∗

si)(t), yk(t) =
∑M

j=1(wkj ∗ xj)(t), wherehji is the
impulse response from sourcei to sensorj, wkj are the
separating filters, and∗ denotes the convolution opera-
tor. A convolutive mixture in the time domain is con-
verted into multiple instantaneous mixtures in the fre-
quency domain. Therefore, we can apply an ordinary
ICA algorithm [1] in the frequency domain to solve a
BSS problem in a reverberant environment. Using a
short-time discrete Fourier transform, the model is ap-
proximated as: X(ω, n) = H(ω)S(ω, n), where, ω
is the angular frequency, andn represents the frame
index. The separating process can be formulated in
each frequency bin as:Y(ω, n) = W(ω)X(ω, n),
whereS(ω, n) = [S1(ω, n), ..., SN (ω, n)]T is the source
signal in frequency binω, X(ω, n) = [X1(ω, n), ...,
XM (ω, n)]T denotes the observed signals,Y(ω, n) =
[Y1(ω, n), ..., YN (ω, n)]T is the estimated source signal,

andW(ω) represents the separating matrix.W(ω) is de-
termined so thatYi(ω, n) andYj(ω, n) become mutually
independent.

The ICA solution suffers scaling and permutation am-
biguities. This is due to the fact that ifW(ω) is a so-
lution, thenD(ω)P(ω)W(ω) is also a solution, where
D(ω) is a diagonal complex valued scaling matrix, and
P(ω) is an arbitrary permutation matrix. We thus have to
solve the scaling and permutation problems to reconstruct
separated signals in the time domain.

There is a simple and reasonable solution for the scal-
ing problem:D(ω) = diag(W−1(ω)), which is obtained
by the minimal distortion principle (MDP) [2], and we
can use it. On the other hand, the permutation problem is
complicated, especially when the number of source sig-
nals is large.

2. Geometric information for solving
permutation problem

Many methods have been proposed for solving the per-
mutation problem, and the use of geometric informa-
tion, such as direction of arrival (DOA) and beam pat-
terns, is one effective approach [3, 4, 5, 6]. We have
proposed a robust method by combining the correlation
based method [7] and the DOA based method [4, 5],
which almost completely solves the problem for 2-source
cases [8]. However it is insufficient when the number of
signals is large or when the signals come from a similar
direction. In this paper, we propose a method for obtain-
ing proper geometric information for solving the permu-
tation problem in such cases.

2.1. Invariant in ICA solution

If a separating matrixW is calculated successfully
and it extracts source signals with scaling ambiguity,
D(ω)W(ω)H(ω) = I holds. Because of the scaling am-
biguity, we cannot obtainH simply from the ICA solu-
tion. However, the ratio of elements in the same column
Hji/Hj′i is invariable in relation toD, and given by

Hji

Hj′i
=

[W−1D−1]ji

[W−1D−1]j′i
=

[W−1]ji

[W−1]j′i
, (1)

where[·]ji denotesji-th element of the matrix. We can
estimate several types of geometric information related
to source signals by using this invariant. The estimated
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information is utilized for solving the permutation prob-
lem.

2.2. DOA estimation with ICA solution

We can estimate the DOA of source signals by using the
above invariant [9]. With a farfield model, a frequency
response is formulated as:

Hji(ω) = eωc−1aT
i pj , (2)

wherec is the speed of wave propagation,a i is a unit
vector that points to the direction of sourcei, andp j rep-
resents a location of sensorj. According to this model,
we have

Hji/Hj′i = eωc−1aT
i (pj−pj′ )

= eωc−1‖pj−pj′‖ cos θi,jj′ , (3)
whereθi,jj′ is the direction of sourcei relative to the sen-
sor pairj andj ′. By using the argument of (3) and (1),
we can estimate:

θ̂i,jj′ = cos−1 arg(Hji/Hj′i)
ωc−1‖(pj − pj′)‖

= cos−1 arg([W−1]ji/[W−1]j′i)
ωc−1‖(pj − pj′ )‖ . (4)

This procedure is valid for sensor pairs with a small spac-
ing.

2.3. Estimation of sphere with ICA solution

Interpretation of the ICA solution by a nearfield model
yields other geometric information. When we adopt the
nearfield model, including the attenuation of the wave,
Hji(ω) is formulated as:

Hji(ω) =
1

‖qi − pj‖eωc−1(‖qi−pj‖) (5)

whereqi represents the location of sourcei. By taking
the ratio of (5) for a pair of sensorsj andj ′ we obtain:

Hji/Hj′i =
‖qi − pj′‖
‖qi − pj‖ eωc−1(‖qi−pj‖−‖qi−pj′‖). (6)

By using the modulus of (6) and (1), we have:
‖qi − pj′‖
‖qi − pj‖ =

∣
∣
∣
∣
[W−1]ji

[W−1]j′i

∣
∣
∣
∣ . (7)

By solving (7) forqi, we have a sphere whose center
Oi,jj′ and radiusRi,jj′ are given by:

Oi,jj′ = pj − 1
r2
i,jj′ − 1

(pj′ − pj), (8)

Ri,jj′ = ‖ ri,jj′

r2
i,jj′ − 1

(pj′ − pj)‖, (9)

whereri,jj′ = |[W−1]ji/[W−1]j′i|. Thus, we can esti-
mate a sphere(Ôi,jj′ , R̂i,jj′ ) on whichqi exists by using
the result of ICAW and the locations of the sensorspj

andpj′ . Figure 1 shows an example of the spheres deter-
mined by (7) for various ratiosri,jj′ . This procedure is
valid for sensor pairs with a large spacing.
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Figure 1: Example of spheres determined by eq.(7) (p j =
[0, 0.3, 0], pj′ = [0,−0.3, 0])
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Figure 2: Result of preliminary experiment
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Figure 3: Sensitivity of DOA estimation

3. Sensitivity and ambiguity in source
location estimation

3.1. Sensitivity of DOA estimation

The BSS performance is influenced by the source sig-
nal location. Figure 2 shows the result of a preliminary
experiment designed to investigate the performance for
closely located signals. We used two source signals with
an inter-angle of20◦ and varied the direction ofs1 from
10◦ to 150◦ by using sets of impulse responses in the
“RWCP Sound Scene Database [10].” The solid line indi-
cates the actual performance, and the dotted line indicates
the performance with optimal permutation. The actual
performance deteriorates rapidly when the position of the
source signals approaches0◦ and180◦, but the optimal
permutation provides a stable performance. This means
that the reason for the deterioration is the failure to solve
the permutation problem.

This can be explained by the sensitivity of the DOA
estimation. When we denote an error in calculated
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arg(Hji/Hj′i) as∆ arg(Ĥ), and an error in̂θi,jj′ as∆θ̂,
the ratio|∆θ̂/∆ arg(Ĥ)| can be approximated by the par-
tial derivative of (4):∣

∣
∣
∣
∣

∆θ̂

∆ arg(Ĥ)

∣
∣
∣
∣
∣
≈

∣
∣
∣
∣
∣

1
ωc−1‖pj − pj′‖ sin(θ̂i,jj′ )

∣
∣
∣
∣
∣
. (10)

Figure 3 shows examples of this value for several fre-
quency bins. We can see that∆ arg(Ĥ) causes a large
error in the estimated DOA when the direction is near the
axis of the sensor pair. Therefore, we consider the esti-
mated DOA to be unreliable in such cases.

3.2. Ambiguity of estimated DOA

The estimation of DOA by using one sensor pair suffers
from some ambiguities. Linear arrays can resolve only
one angular component, and this leads to a cone of un-
certainty [11]. If we assume a plane on which signals
exist, the cone is reduced to two half-lines. However, the
ambiguity of two directions that are symmetrical with re-
spect to the axis of the sensor pair still remains. When the
spacing between sensors is larger than half a wavelength,
spatial aliasing causes another ambiguity, but we do not
consider this here.

3.3. Resolving sensitivity and ambiguity

When the number of source signals increases, BSS using
ICA requires the same or a larger number of sensors than
sources, and many kinds of array geometry are possible.
However, if we use frequency domain BSS, we should
choose an appropriate array geometry in order to obtain
and utilize reliable geometrical information for solving
the permutation problem.

A linear array is inappropriate when the potential
source location is omnidirectional, because every sensor
pair in the linear array has similar sensitivity for DOA es-
timation, and even when the estimated DOA is reliable,
the cone of uncertainty remains. A nonlinear arrange-
ment of sensors is suitable for resolving both sensitivity
and ambiguity. Thus, we propose a combination of small
and large spacing sensor pairs that have various axis di-
rections.

By using the DOA estimation described in Sec.2.2
with the small spacing sensor pairs that have different
axis directions, we can estimate cones which have vari-
ous vertex angles for one source direction. Because of the
sensitivity explained in Sec.3.1, we assume that obtuse
cones are reliable, and acute cones are unreliable. Then,
we can determine a bearing line pointing to a source di-
rection by using the reliable cones (Fig. 4).

Even when some signals come from the same or a
similar direction, we can distinguish between them by us-
ing the information provided by the large spacing sensor
pair described in Sec.2.3. The source locations can be es-
timated by combining the estimated direction and spheres
(Fig. 5). Then, we can classify separated signals in the
frequency domain according to the estimated source lo-
cations.
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Figure 4: Combination of small spacing sensor pairs with
different axes
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(Ô2,14, R̂2,14)

Figure 5: Combination of small spacing sensor pairs and
a large spacing sensor pair

4. Experiments
We carried out experiments for 6 sources and 8 micro-
phones using speech signals convolved with impulse re-
sponses measured in a room. The room layout is shown
in Fig. 6. Other conditions are summarized in Table 1.
The experimental procedure is as follows.

First, we apply ICA toxj(t)(j = 1, ..., 8), and cal-
culate separating matrixW(ω) for each frequency bin.
Then we estimate DOAs by using the rows ofW−1(ω)
corresponding to the small spacing microphone pairs (1-
3, 2-4, 1-2 and 2-3). Figure 7 shows a histogram of esti-
mated DOAs. We can find five clusters in this histogram,
and one cluster is twice the size of the others. This im-
plies that these are six source signals, and two of them
come from the same direction (about 150◦). Then, we
apply the estimation of spheres to the signals that belong
to the large cluster by using the rows ofW−1(ω) corre-
sponding to the large spacing microphone pairs (7-5, 7-8,
6-5, 6-8). Finally, we can classify the signals into six
clusters.

Unfortunately, the classification by the estimated lo-
cation tends to be inconsistent especially in a reverber-
ant environment. In many frequency bins, several signals
are assigned to the same cluster, and such classification
is inconsistent. We solve the permutation only for fre-
quency bins with a consistent classification, and we em-
ploy a correlation based method [8] for the rest. The cor-
relation based method solves the permutation so that the
inter-frequency correlation for neighboring or harmonic
frequency bins becomes maximized. In addition, we use
the spectral smoothing method proposed in [12] to make
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Figure 6: Room layout

Table 1: Experimental conditions
Sampling rate 8 kHz
Data length 6 s
Frame length 2048 point (256 ms)
Frame shift 512 point (64 ms)
ICA algorithm Infomax (complex valued)

Estimated DOA (deg.)
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Figure 7: Histogram of estimated DOAs obtained by us-
ing small spacing microphone pairs

separating filters in the time domain from the result of
ICA W(ω).

The performance is measured from the signal-to-
inference ratio (SIR). The portion ofyk(t) that comes
from si(t) is calculated byyki(t) =

∑M
j=1(wkj ∗ hji ∗

si)(t). If we solve the permutation problem so thats i(t)
is output toyi(t), the SIR foryk(t) is defined as:
SIRk = 10 log[

∑
t ykk(t)2/

∑
t(

∑
i �=k yki(t))2] (dB).

We measured SIRs for three permutation solving
strategies: only the correlation based method (“C”), the
estimated DOAs and correlation (“D+C”), and the com-
bination of estimated DOAs, spheres and correlation
(“D+S+C”, proposed method). We also measured input
SIRs by using the mixture observed by microphone 1 for
the reference (“Input SIR”). The results are summarized
in Table 2.

Our proposed method succeeded in separating six
speech signals. We can see that the discrimination ob-
tained by using estimated spheres is effective in improv-
ing the separation performance for signals coming from
the same direction.

Table 2: Experimental results (dB)
SIR1 SIR2 SIR3 SIR4 SIR5 SIR6 ave.

Input SIR -8.3 -6.8 -7.8 -7.7 -6.7 -5.2 -7.1
C 4.4 2.6 4.0 9.2 3.6 -2.0 3.7
D+C 4.5 10.8 14.4 4.5 5.4 8.8 8.1
D+S+C 12.3 5.6 14.5 7.6 8.9 10.8 10.0

5. Conclusion
We proposed the combination of small and large spac-
ing microphone pairs with various axis directions in or-
der to obtain proper geometrical information for solving
the permutation problem in frequency domain BSS. In
experiments, our method succeeded in the separation of
six speech signals, even when two come from the same
direction. The computation time was about 1 min. for 6
s. data.
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