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ABSTRACT
This paper presents a method for solving the permutation
problem of frequency domain blind source separation (BSS)
when the number of source signals is large, and the potential
source locations are omnidirectional. We propose a combi-
nation of small and large spacing sensor pairs with various
axis directions in order to obtain proper geometrical infor-
mation for solving the permutation problem. Experimental
results show that the proposed method can separate a mix-
ture of six speech signals that come from various directions,
even when two of them come from the same direction.

1. INTRODUCTION

Blind source separation (BSS) is a technique for estimat-
ing original source signals using only observed mixtures.
When the source signals are si(t)(i = 1, ..., N ), the sig-
nals observed by sensor j are xj(t)(j = 1, ..., M), and
the separated signals are yk(t)(k = 1, ..., N ), the BSS
model can be described as: xj(t) =

∑N
i=1(hji ∗ si)(t),

yk(t) =
∑M

j=1(wkj ∗ xj)(t), where hji is the impulse re-
sponse from source i to sensor j, wkj are the separating
filters, and ∗ denotes the convolution operator.

Figure 1 shows a flow of the BSS in frequency domain.
A convolutive mixture in the time domain is converted into
multiple instantaneous mixtures in the frequency domain.
Therefore, we can apply an ordinary independent compo-
nent analysis (ICA) algorithm [1] in the frequency domain
to solve a BSS problem in a reverberant environment. Us-
ing a short-time discrete Fourier transform, the model is
approximated as: X(ω, n) = H(ω)S(ω, n), where, ω is
the angular frequency, and n represents the frame index.
The separating process can be formulated in each frequency
bin as: Y(ω, n) = W(ω)X(ω, n), where S(ω, n) =
[S1(ω, n), ..., SN (ω, n)]T is the source signal in frequency
bin ω, X(ω, n) = [X1(ω, n), ..., XM (ω, n)]T denotes the
observed signals, Y(ω, n) = [Y1(ω, n), ..., YN (ω, n)]T is
the estimated source signal, and W(ω) represents the sep-
arating matrix. W(ω) is determined so that Yi(ω, n) and
Yj(ω, n) become mutually independent.

The ICA solution suffers permutation and scaling am-
biguities. This is due to the fact that if W(ω) is a solu-
tion, then D(ω)P(ω)W(ω) is also a solution, where D(ω)
is a diagonal complex valued scaling matrix, and P(ω) is
an arbitrary permutation matrix. We thus have to solve the
permutation and scaling problems to reconstruct separated
signals in the time domain.
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Fig. 1. Flow of frequency domain BSS

There is a simple and reasonable solution for the scal-
ing problem: D(ω) = diag{[P(ω)W(ω)]−1}, which is ob-
tained by the minimal distortion principle (MDP) [2], and
we can use it. On the other hand, the permutation problem
is complicated, especially when the number of source sig-
nals is large. Time domain BSS does not suffer the permu-
tation problem, however it takes much computational time
as compared with frequency domain BSS [3]. Therefore we
adopt the frequency domain approach.

Many methods have been proposed for solving the per-
mutation problem, and the use of geometric information,
such as beam patterns [4, 5, 6], direction of arrival (DOA)
and source locations[7], is effective approach. We have pro-
posed a robust method by combining the correlation based
method [8] and the DOA based method [4, 5], which almost
completely solves the problem for 2-source cases [9]. How-
ever it is insufficient when the number of signals is large
or when the signals come from a similar direction. In this
paper, we propose a method for obtaining proper geomet-
ric information for solving the permutation problem in such
cases.

2. GEOMETRIC INFORMATION FOR SOLVING
PERMUTATION PROBLEM

2.1. Invariant in ICA solution

If a separating matrix W is calculated successfully
and it extracts source signals with scaling ambiguity,
D(ω)W(ω)H(ω) = I holds (except for singular frequency
bins). Because of the scaling ambiguity, we cannot obtain
H simply from the ICA solution. However, the ratio of ele-
ments in the same column Hji/Hj′i is invariable in relation
to D, and given by

Hji

Hj′i
=

[W−1D−1]ji

[W−1D−1]j′i
=

[W−1]ji

[W−1]j′i
, (1)
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where [·]ji denotes ji-th element of the matrix. We can
estimate several types of geometric information related to
source signals by using this invariant. The estimated infor-
mation is utilized for solving the permutation problem.

2.2. DOA estimation with ICA solution

We can estimate the DOA of source signals by using the
above invariant [10]. With a farfield model, a frequency
response is formulated as:

Hji(ω) = ejωc−1aT
i pj , (2)

where c is the speed of wave propagation, a i is a unit vector
that points to the direction of source i, and pj represents a
location of sensor j. According to this model, we have

Hji/Hj′i = ejωc−1aT
i (pj−pj′ )

= ejωc−1‖pj−pj′‖ cos θi,jj′ , (3)
where θi,jj′ is the direction of source i relative to the sensor
pair j and j ′. By using the argument of (3) and (1), we can
estimate:

θ̂i,jj′ = cos−1 arg(Hji/Hj′i)
ωc−1‖(pj − pj′)‖

= cos−1 arg([W−1]ji/[W−1]j′i)
ωc−1‖(pj − pj′)‖ . (4)

This procedure is valid for sensor pairs with a small spacing.

2.3. Estimation of sphere with ICA solution

Interpretation of the ICA solution by a nearfield model
yields other geometric information. When we adopt the
nearfield model, including the attenuation of the wave,
Hji(ω) is formulated as:

Hji(ω) =
1

‖qi − pj‖ejωc−1(‖qi−pj‖) (5)

where qi represents the location of source i. By taking the
ratio of (5) for a pair of sensors j and j ′ we obtain:

Hji/Hj′i =
‖qi − pj′‖
‖qi − pj‖ ejωc−1(‖qi−pj‖−‖qi−pj′‖). (6)

By using the modulus of (6) and (1), we have:
‖qi − pj′‖
‖qi − pj‖ =

∣
∣
∣
∣
[W−1]ji

[W−1]j′i

∣
∣
∣
∣ . (7)

By solving (6) for qi, we have a sphere whose center Oi,jj′

and radius Ri,jj′ are given by:

Oi,jj′ = pj − 1
r2
i,jj′ − 1

(pj′ − pj), (8)

Ri,jj′ = ‖ ri,jj′

r2
i,jj′ − 1

(pj′ − pj)‖, (9)

where ri,jj′ = |[W−1]ji/[W−1]j′i|. Thus, we can estimate
a sphere (Ôi,jj′ , R̂i,jj′ ) on which qi exists by using the re-
sult of ICA W and the locations of the sensors pj and pj′ .
Figure 2 shows an example of the spheres determined by (7)
for various ratios ri,jj′ . This procedure is valid for sensor
pairs with a large spacing.

The models (2) and (5) are simple approximation with-
out the multi-path propagation and reverberation, however
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Fig. 2. Example of spheres determined by eq.(7) (p j =
[0, 0.3, 0], pj′ = [0,−0.3, 0])
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Fig. 3. Source locations and estimated DOAs
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Fig. 4. Sensitivity of DOA estimation

we can obtain information for classifying signals by using
them.

3. SENSITIVITY AND AMBIGUITY IN SOURCE
LOCATION ESTIMATION

3.1. Sensitivity of DOA estimation

DOA estimation is sensitive to source locations. Figure 3
shows examples of DOA estimation with two different
source locations. When the source signals are almost in
front of a sensor pair, their directions can be estimated ro-
bustly. However, when the signals are nearly horizontal to
the axis of the pair, the estimated directions tend to have
large errors. This can be explained as follows.

When we denote an error in calculated arg(Hji/Hj′i)
as ∆ arg(Ĥ), and an error in θ̂i,jj′ as ∆θ̂, the ratio
|∆θ̂/∆ arg(Ĥ)| can be approximated by the partial deriva-
tive of (4):∣

∣
∣
∣
∣

∆θ̂

∆ arg(Ĥ)

∣
∣
∣
∣
∣
≈

∣
∣
∣
∣
∣

1

ωc−1‖pj − pj′‖ sin(θ̂i,jj′ )

∣
∣
∣
∣
∣
. (10)
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Fig. 5. Combination of small spacing sensor pairs with dif-
ferent axes

Figure 4 shows examples of this value for several frequency
bins. We can see that ∆ arg(Ĥ) causes a large error in the
estimated DOA when the direction is near the axis of the
sensor pair. Therefore, we consider the estimated DOA to
be unreliable in such cases.

3.2. Ambiguity of estimated DOA

Another problem regarding DOA estimation is ambiguity.
When we use only one pair of sensors or a linear array,
we estimate a cone rather than a direction. If we assume
a plane on which sources exist, the cone is reduced to two
half-lines. However, the ambiguity of two directions that are
symmetrical with respect to the axis of the sensor pair still
remains.This is a fatal problem when the source locations
are omnidirectional.

When the spacing between sensors is larger than half a
wavelength, spatial aliasing causes another ambiguity, but
we do not consider this here.

3.3. Resolving sensitivity and ambiguity

A nonlinear arrangement of sensors is suitable for resolving
both sensitivity and ambiguity. We propose a combination
of small and large spacing sensor pairs that have various
axis directions.

By using the DOA estimation described in Sec.2.2 with
the small spacing sensor pairs that have different axis di-
rections, we can estimate cones which have various vertex
angles for one source direction. Because of the sensitivity
explained in Sec.3.1, we assume that obtuse cones are re-
liable, and acute cones are unreliable. Then, we can deter-
mine a bearing line pointing to a source direction by using
the reliable cones (Fig. 5).

Even when some signals come from the same or a simi-
lar direction, we can distinguish between them by using the
information provided by the large spacing sensor pair de-
scribed in Sec.2.3. The source locations can be estimated
by combining the estimated direction and spheres (Fig. 6).
Then, we can classify separated signals in the frequency do-
main according to the estimated source locations.

4. EXPERIMENTS

We carried out experiments for 6 sources and 8 micro-
phones using speech signals convolved with impulse re-
sponses measured in a room. The room layout is shown
in Fig. 7. Other conditions are summarized in Table 1. The
experimental procedure is as follows.

First, we apply ICA to xj(t)(j = 1, ..., 8), and calculate
separating matrix W(ω) for each frequency bin. Then we

DOA of S1 and S2 estimated by
small spacing sensor pairs

S2

S1

Spheres estimated by
large spacing sensor pair

(Ô2, R̂2)

(Ô1, R̂1)

Estimated
source locations

Fig. 6. Combination of small spacing sensor pairs and a
large spacing sensor pair

estimate DOAs by using the rows of W−1(ω) correspond-
ing to the small spacing microphone pairs (1-3, 2-4, 1-2 and
2-3). Figure 8 shows a histogram of estimated DOAs. We
can find five clusters in this histogram, and one cluster is
twice the size of the others. This implies that these are six
source signals, and two of them come from the same di-
rection (about 150◦). We can solve permutation for four
sources by using this information (Fig. 9).

Then, we apply the estimation of spheres to the sig-
nals that belong to the large cluster by using the rows of
W−1(ω) corresponding to the large spacing microphone
pairs (7-5, 7-8, 6-5 and 6-8). Figure 10 shows estimated
radiuses for S4 and S5 regarding the microphone pair 7-5.
Finally, we can classify the signals into six clusters.

Unfortunately, the classification by the estimated loca-
tion tends to be inconsistent especially in a reverberant en-
vironment. In many frequency bins, several signals are as-
signed to the same cluster, and such classification is incon-
sistent. We solve the permutation only for frequency bins
with a consistent classification, and we employ a correla-
tion based method [9] for the rest. The correlation based
method solves the permutation so that the inter-frequency
correlation for neighboring or harmonic frequency bins be-
comes maximized. In addition, we use the spectral smooth-
ing method proposed in [11] to make separating filters in the
time domain from the result of ICA W(ω).

The performance is measured from the signal-to-
inference ratio (SIR). The portion of yk(t) that comes from
si(t) is calculated by yki(t) =

∑M
j=1(wkj ∗ hji ∗ si)(t). If

we solve the permutation problem so that s i(t) is output to
yi(t), the SIR for yk(t) is defined as:

SIRk = 10 log[
∑

t ykk(t)2/
∑

t(
∑

i �=k yki(t))2] (dB).

We measured SIRs for three permutation solving strate-
gies: only the correlation based method (“C”), the estimated
DOAs and correlation (“D+C”), and the combination of
estimated DOAs, spheres and correlation (“D+S+C”, pro-
posed method). We also measured input SIRs by using the
mixture observed by microphone 1 for the reference (“Input
SIR”). The results are summarized in Table 2.

Our proposed method succeeded in separating six
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Table 1. Experimental conditions
Sampling rate 8 kHz
Data length 6 s
Frame length 2048 point (256 ms)
Frame shift 512 point (64 ms)
ICA algorithm Infomax (complex valued)

Estimated DOA (deg)
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Fig. 8. Histogram of estimated DOAs obtained by using
small spacing microphone pairs

speech signals. We can see that the discrimination obtained
by using estimated spheres is effective in improving the sep-
aration performance for signals coming from the same di-
rection.

5. CONCLUSION

We proposed the combination of small and large spacing
microphone pairs with various axis directions in order to ob-
tain proper geometrical information for solving the permu-
tation problem in frequency domain BSS. In experiments,
our method succeeded in the separation of six speech sig-
nals, even when two come from the same direction. The
computation time was about 1 min. for 6 s. data.
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