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Abstract

It has been recently shown by Pajunen and Hyv¨arinen that using
algorithmic complexity based cost functions to perform blind
source separation (BSS) yields very good results, at least in the
instantaneous BSS case. From the theoretical point of view,
such cost functions present numerous advantages over the ones
derived using the theory of ICA. In this paper, we suggest a
method of using algorithmic complexity to perform blind source
separation for convolutive speech mixtures. After deriving the
appropriate cost function, we show how linear prediction can be
used to obtain an acceptable approximation for the algorithmic
complexity of a speech signal. The well known properties of
speech (stationary for time intervals of approximately 30 ms.,
possibility of accurate modeling as an AR process, etc.) are
taken into account to derive this approximation. Finally, af-
ter examining the different problems which arise when actually
implementing gradient descent on the final cost function, we
discuss the results of computer simulation which are encourag-
ing in terms of SNR performance and propose some directions
for future work.

1. Introduction
Blind source separation (BSS) is a method for recovering a set
of source signals from the observation of their mixtures without
any prior knowledge about the mixing process. We consider
here the convolutive mixture case, i.e.n source signalss(t) =
(s1(t), . . . , sn(t))T are mixed and the corresponding mixtures
x(t) = (x1(t), . . . , xm(t))T observed atm sensors, following
xj(t) =

�n
i=1

�
l hji(l)si(t − l), wherehji(l) represents the

impulse response from sourcei to sensorj. The goal is to find a
separating system consisting of FIR filterswij(l) of lengthL to
produce separated signalsyi(t) =

�m
j=1

�L−1
l=0 wij(l)xj(t −

l) that are as close as possible to the source signalssi(t).
Many methods based on independent component analysis

(ICA) have been proposed to solve the above BSS problem.
We do not review them here, extensive literature on the sub-
ject having been published over the past years (see for instance
[1, 2, 3]). We however give an outline of the less well known
algorithmic complexity based approaches.

TheKolmogorov (or algorithmic) complexityKU (xN) of a
stringxN = x1x2 . . . xN with respect to a universal computer
U is defined as ([4, 5])

KU (xN) = min
pU (xN )

|pU (xN)|, (1)

the minimum length over all programspU (xN) on a universal
computerU that printxN and halt. The universal computerU
is henceforth considered fixed and its mention thus omitted (see
[4] for more extensive explanations). The BSS problem can
then be defined as [5]:

Having observed mixturesx(t) = f(s(t)), find a mixing map-
ping f̂ such that the total complexity of the mappingf̂ and the
separated signalsy(t) is minimized.
Applying this definition to convolutive BSS leads to the mini-
mization of the cost function

JK

�
W(l), y(t)

�
= K

�
W−1(l)

�
+

1

T
K[y(t)], (2)

where the separating systemW(l) = [wij(l)] is assumed to
be invertible andy(t) = (y1(t), . . . , yn(t))T is the vector of
separated signals, its componentsyi(t) being of lengthT for all
i.

When using the complexity minimization criterion, no as-
sumptions about the distribution of the source signals need to
be made. Moreover, both time correlations and higher order
statistics are taken into account to perform BSS, as opposed to
standard ICA-based methods which use only one of these two
criteria (see [5] for more details).

2. Proposed Method
We consider here the estimation of onlyonesource signalsα(t),
with α ∈ {1, . . . , n}. In the remainder of this section, we de-
note bys(t) the source signal to be estimated (the indexα is
dropped for more clarity),y(t) is the lengthT estimate fors(t),
andw(l) = (w1(l), . . . , wm(l)) denotes the separating FIR fil-
ters. We hence havey(t) =

�m
j=1

�L−1
l=0 wj(l)xj(t − l).

In the case of the above one-unit algorithm, the unmixing
systemw(l) is not invertible and the cost function (2) cannot be
used due to the presence of the first term, which we choose here
to ignore (this is also done in [6] in the linear BSS case). The
cost function (2) then becomes

J ′
K [y(t)] =

1

T
K[y(t)]. (3)

In order to actually perform BSS, we first need to derive an ap-
proximative expression̂K[y(t)] for the algorithmic complexity
K[y(t)] of a time sequencey(t). This is the object of sec. 2.1
(a similar discussion can also be found in [6]). Finally, we use
the cost function

J ′
K̂ [y(t)] =

1

T
K̂[y(t)] (4)

to implement BSS. Sec. 2.2 is devoted to the calculation of the
gradient of (4) using the approximation̂K[y(t)] for K[y(t)]
obtained in sec. 2.1. In sec. 2.3, we discuss how to impose a
normalization contraint onw(l) in order to avoid solutions of
the formw(l) = 0.

2.1. Algorithmic Complexity of a Time Sequence

Consider a time sequencey(t) = (y(0), . . . , y(T − 1)). It can
be shown (see [4]) that if its samplesy(0), . . . , y(T − 1) are
i.i.d. according to the probability density functionp(y) of a
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random variableY , then

lim
T→∞

1

T
K[y(t)] = H[y(t)], (5)

where the notationH[y(t)] is used for the entropyH(Y ) of the
random variableY (for convenience, a similar notation will be
used in all expressions involving expectations in the remainder
of this paper).

However, ify(t) is a natural signal, there will in general be
dependencies among its samples, and the above theorem cannot
be used. Therefore, in order to help remove these dependencies,
we use linear prediction (see [7]) to find an estimateŷ(t) for
y(t) following

ŷ(t) =

τ0�
τ=1

ατy(t − τ ) (6)

and define the sequence of the residualsδy(t) of y(t) as

δy(t) � y(t) − ŷ(t), t = τ0, . . . , T − 1, (7)
the idea being to approximate the complexity of the sequence
y(t) by that of the sequenceδy(t). Note that in order to per-
form linear prediction, the processy(t) must be wide-sense sta-
tionary. Moreover, ify(t) can be modeled as an AR process of
orderτ0, then the sequenceδy(t) is white and equal to the inno-
vations process ofy(t). If its samples are also i.i.d. according
to the probability density functionp(δy) of a random variable
δY , then the equality

lim
T→∞

1

T − τ0
K[δy(t)] = H[δy(t)] (8)

holds, whereH[δy(t)] denotes the entropy of the random vari-
ableδY . However, it is difficult to find natural sequencesy(t)
that can exactly be modeled as AR processes, and even in that
case, there is no guarantee that the samples of the innovations
processδy(t) will be mutually independent. Equality (8) is thus
only approximative. Nevertheless, for natural signalsy(t), it is
reasonable to assume that (8) is closer to being verified than
(5) since linear prediction, as used in (6) and (7), helps remove
dependencies. The complexity of the sequencey(t) is thus ap-
proximated by

K[y(t)] ≈ T

T − τ0
K[δy(t)] ≈ TH[δy(t)], (9)

where the second approximation was obtained using (8). Note
that the complexity of the prediction coefficients(α1, . . . , ατ0)
has been neglected in (9).

Let us now consider the problem of the estimation of the
entropy of the residualH[δy(t)] which appears in (8) and (9).
It is useful to normalize the residualδy to unit variance in order
to remove the effects of scaling. Denoting byσδ the variance of
the residual, we have

H[δy(t)] = H

�
δy(t)

σδ

�
+ log σδ (10)

If a good approximation (denotedG(·)) of the negative log
density of the pdf of the residual normalized to unit variance
− log

�
p( δy

σδ
)
�

is known, we can easily approximateH[δy(t)]
as

H[δy(t)] ≈ E

�
G

�
δy

σδ

��
+ log σδ. (11)

In most cases,p( δy
σδ

) is unknown and we setG(·) equal to the
negative log density of a generic super- or subgaussian random
variable (depending on the nature of the residual). We finally
obtain the following approximation for the per sample complex-
ity KT [y(t)] � 1

T
K[y(t)] of the time sequencey(t):

K̂T [y(t)] = E

�
G

�
δy

σδ

��
+ log σδ. (12)

2.2. Gradient Descent

Now that an approximation for the algorithmic complexity of
a sequencey(t) has been derived, let us return to the problem
of blind source separation of convolutive mixtures, where we
extractonecomponenty(t) =

�m
j=1

�L−1
l=0 wj(l)xj(t − l) =�L−1

l=0 wT (l)x(t − l), with w(l) = (w1(l), . . . , wm(l))T and
x(t) = (x1(t), . . . , xm(t))T . We now have to find the FIR
filtersw(l) of lengthL such that the cost function given in (4),

J ′
K̂ [y(t)] = K̂T [y(t)], (13)

whereK̂T [y(t)] is evaluated using (12), is minimized. We thus
calculate the derivative ∂

∂w(q)
J ′

K̂
[y(t)] in order to perform gra-

dient descent onJ′
K̂

[y(t)]. After some basic algebraic manipu-
lations, we obtain:

∂J ′
K̂

[y(t)]

∂w(q)
=

∂

∂w(q)
K̂T

	
L−1�
l=0

w T (l) · x(t − l)



=

E

	
δx(t − q) g

�
δy (t)

σδ

�


+
1

σδ

�
1 − 1

σδ
E

	
δy (t) g

�
δy (t)

σδ

�
�
∂

∂w(q)
σδ

− 1

σδ

τ0�
τ=1

�
E

	
y(t − τ ) g

�
δy (t)

σδ

�

· ∂

∂w(q)
ατ

�
, (14)

with δx(t) � x(t)−�τ0
τ=1 ατx(t−τ ), δy(t) =

�L−1
l=0 w T (l)�

x(t − l) −�τ0
τ=1 ατx(t − l − τ )

�
, σδ the variance ofδy(t),

α1 . . . ατ0 the linear prediction coefficients obtained usingy(t)
andg(·) the derivative ofG(·). To actually use this expression
in a gradient descent algorithm, we need to evaluate∂

∂w(q)
σδ

and ∂
∂w(q)

ατ for all τ ∈ {1, · · · , τ0}. The expressions for
α1 . . . ατ0 andσδ being quite complex (especially for largeτ0),
this is not an easy task.

We hence restrict ourselves to the caseτ0 = 1 (first order
linear prediction). In this case, the expressions for∂

∂w(q)
σδ

and ∂
∂w(q)

α1 (which are given in the appendix) are reasonably
simple.

2.3. Normalization Constraint

To avoid solutions of the kindw(l) = 0, we need to impose
a normalization constraint onw(l). We propose two different
possibilities. A first option consists in adding a term of the form
−µ log σy to J ′

K̂
[y(t)] = K̂T [y(t)], which yields the cost func-

tion
J ′

K̂,CL[y(t)] = K̂T [y(t)] − µ log σy. (15)
Forµ > 0, this increases the cost of solutions with small values
of σ2

y (which should be avoided). Note also that the value of
the cost function is left almost unchanged ifσ2

y ≈ 1. Adapting
the value ofµ so as to haveσ2

y ≈ 1 using a simple control loop
proved to work well in practice: a minimum of the cost function
satisfyingσ2

y ≈ 1 was always attained (see sec. 4).
Computer simulations also showed that, at least in the case

of speech mixtures, performing constraint free gradient descent
on J ′

K̂
[y(t)] = K̂T [y(t)] actually seemed to work as well: al-

though bothσ2
y and the amplitude ofw(l) decrease during min-

imization, the latter is completed before eitherσ2
y or w(l) be-

come unacceptably small. This is our second method.
In the sequel, we respectively refer to our two methods of

dealing with the normalization problem as the “control loop”
and “unconstrained” methods.
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3. Convolutive Speech Mixtures
In this section, we show how to apply the method outlined in
sec. 2 to the particular case of BSS for convolutive speech mix-
tures. We thus assume that sequencesy(t) andx(t) represent
speech signals sampled at a given frequencyfs.

3.1. Stationarity and AR model

The properties of speech have already been extensively ana-
lyzed: it has among others been shown that it can be considered
stationary during time intervals ofTstat ≈ 30 ms. [8] and that
it can accurately be modeled as an AR process [9], the order of
which depends on the particular application in view.

In order to compute the approximation of the per sample
complexityK̂T [y(t)] of y(t), we need to use linear prediction,
with the underlying assumption thaty(t) is wide-sense station-
ary. Therefore, sinceTstat ≈ 30 ms., we split y(t) into M
segments of lengthL stat = fs · Tstat following

y(t) =
M−1�
i=0

y(i)(t), (16)

where

y(i)(t) =



y(t) if i L stat ≤ t < (i + 1) L stat and t < T
0 otherwise.

(17)
If the M segmentsy(i)(t) are mutually independent, it is rea-
sonable to assume thatK[y(t)] ≈�M−1

i=0 K[y(i)(t)] (see [5]).
The gradient ofK̂T [y(t)] can then be approximately evaluated
as

∂

∂w(q)
K̂T [y(t)] ≈

M−1�
i=0

∂

∂w(q)
K̂T

�
y(i)(t)

�
. (18)

After splitting x(t) into M segmentsx(i)(t), proceeding as
with y(t) in (16) and (17), equation (14) – wherex(t) is re-
placed byx(i)(t) – can be used to evaluate each one of the
terms in the above sum. Linear prediction is also performed
separately for each of theM segmentsy(i)(t) yielding M se-
quencesδy(i)(t) which are used instead ofδy(t) in (14). Note
however that the equality

y(i)(t) =

L−1�
l=0

wT (l)x(i)(t − l) (19)

is not quite exact for values oft close toi·Lstat or (i+1)·L stat.
Since speech can be modeled as an AR process, we can rea-

sonably assume that the sequencesδy(i)(t) are close to being
white, and hence that their samples are close to being uncorre-
lated. This is a necessary condition for having i.i.d. sequences
δy(i)(t). We can thus hope that (8), whereδy(t) is replaced by
δy(i)(t), is approximately verified for each sequenceδy(i)(t).

3.2. Approximation of the pdf of the Residual

In this section, we consider the problem of the evaluation of
the negative log density of the pdf of the residual normalized
to unit variance− log

�
p( δy

σδ
)
�
. Evaluating the probability den-

sity p( δy
σδ

) using histograms (see Fig. 1) shows that, at least
in the case of the parameters specified in sec. 4, it is reason-
able to assume that− log

�
p( δy

σδ
)
� ≈ 1

2
log 2 +

√
2
�� δy

σδ

��, i.e.
the negative log-density of a Laplacian random variable with
λ =

√
2. 1 This is not a surprising result since it is a well known

1The generic probability density function of a zero mean Laplacian
random variable X is given byp(x) = λ

2
e−λ|x|.
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Figure 1: Probability density function of the residual (normal-
ized to unit variance)p(δy/σδ) as estimated using histograms.

The Laplacian pdfL(δy/σδ) =
√

2
2

· e−
√

2 |δy/σδ| is a good
approximation forp(δy/σδ).

.

Table 1: Experimental conditions
Source signal length 6 s.
Direction of sources 120◦ and50◦ (two sources)
Inter-sensor spacing d = 4 cm. (two sensors)
Reverberation time Tr = 130 ms.
Sampling frequency fs = 8 kHz.

fact that speech is Laplacian distributed. Note however that
− log

�
p( δy

σδ
)
�

is function of many different parameters (mixing
system, separating system, order of the linear predictor, source
signals, iteration number, ...) and in some cases may not be well
approximated by1

2
log 2 +

√
2
�� δy

σδ

��.
4. Computer Simulations

The method outlined in secs. 2 and 3 was tested by com-
puter simulation. One source signal was estimated from two
two-signal mixtures, this having been done for twelve differ-
ent source signal combinations. The experimental procedure
was the following: the mixing system’s impulse responses
{hij(l), i, j = 1 . . . 2} were first measured in a real room using
the experimental conditions summarized in Table 1. Twelve dif-
ferent combinations(s1(t), s2(t)) of speech signals produced
by two male and two female speakers were then mixed follow-
ing xj(t) =

�2
i=1

�
l hji(l)si(t − l), and the proposed one-

unit algorithm subsequently applied to extract one speech signal
from each of the twelve mixtures. We used a first order linear
predictor (τ0 = 1), a stationarity timeTstat = 125 ms. and sep-
arating filtersw(l) = (w1(l), w2(l)) of lengthL = 256 taps.
Although speech signals can only be considered stationary for
time intervals of approximately30 ms., we setTstat = 125 ms.
(corresponding toL stat = 1000 taps atfs = 8 kHz) in or-
der to be able to learn filtersw(l) of acceptable length (this
being because we ideally must haveL � Lstat). Using
Tstat = 125 ms. proved to be acceptable for our complex-
ity evaluation purposes. Moreover,w(l) was initially set to
winit(l) =

�
δ(L

2
),−δ(L

2
)
�
, we used a step size of1.0× 10−3,

and two different methods (“control loop” and “unconstrained”)
were used to deal with the normalization problem (see sec. 2.3).

The results are displayed in Table 2. The SDR (between the
original signals(t) and the extracted signaly(t)) was measured
using the method proposed in [10]. Both the “control loop” and
“unconstrained” versions of the suggested algorithm achieved
a good SNR improvement, but the extracted signal was often
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CONTROL LOOP UNCONSTRAINED

Speaker Ext. SNR Final Ext. SNR Final
Combin. Sig. imp. SDR Sig. imp. SDR

(dB) (dB) (dB) (dB)

M1-M2 M1 31.73 −3.29 M1 23.91 −5.59
M2-M1 M2 11.60 −16.88 M1 22.62 −4.18
M1-F1 M1 25.59 −3.03 M1 17.82 −4.23
F1-M1 M1 31.60 −5.55 F1 8.44 −15.36
M1-F2 M1 13.58 −2.12 M1 3.78 −4.16
F2-M1 M1 20.60 −6.05 F2 16.09 −15.15
M2-F1 M2 10.96 −16.41 F1 20.09 −8.18
F1-M2 M2 13.22 −17.19 F1 20.86 −7.57
M2-F2 M2 4.71 −15.11 F2 26.43 −11.63
F2-M2 M2 5.77 −16.36 F2 21.82 −10.61
F1-F2 F1 17.61 −18.21 F1 1.79 −2.51
F2-F1 F1 24.13 −12.92 F2 8.89 −17.98

Average 17.59 −11.09 16.05 −8.92

Table 2: SNR improvement and final SDR obtained with the
proposed algorithm (“control loop” and “unconstrained” ver-
sions) for twelve different speech signal combinations.Tr =
130 ms.
.

severely distorted. In the “control loop” version, the distortion
was due to filtering (both high-pass filtering and low-pass filter-
ing were observed), whereas in the “unconstrained” version it
was due to whitening (see Fig. 2). We observed that the distor-
tion introduced by high- or low-pass filtering was much more
unpleasant than the one introduced by whitening when it came
to listening. Therefore, we believe that the “unconstrained” ver-
sion is more suitable than the “control loop” version for con-
volutive speech mixture BSS. Table 2 also shows that the al-
gorithm performance depends on the nature of the input sig-
nals: for instance, in the “control loop” version, the results were
much better for combinationM1-M2 than for combinationF1-F2.

The fact that the SDR be negative might seem strange at
first sight. Note however that we are trying to recover the origi-
nal signals(t), which is substantially more difficult than recov-
ering a reverberated version ofs(t) (observed at one of the sen-
sors), as in most traditional convolutive BSS algorithms based
on ICA. Bearing this in mind, an SDR of−4 dB to −5 dB
– comparable to the distortion due to the reverberation time
Tr = 130 ms. – is acceptable. Nonetheless, when the SDR is
below−10 dB, the extracted signal, especially in the “control
loop” version of the algorithm, can become very unpleasant to
hear. Still, we believe that algorithmic complexity is a concept
powerful enough to allow to recover the original signals(t) and
will attempt, in future work, to improve the SDR performance
by using approximations of the cost function (2) which include
the termK[W−1(t)] (neglected in this paper).

5. Conclusions

We proposed a method to use algorithmic complexity as a sep-
arating criterion to perform BSS for convolutive mixtures. The
main advantage of this method over standard ICA algorithms is
that, to achieve separation, the whole signal structure is taken
into account instead of only time correlations or higher order
statistics. The experimental results obtained thus far are en-
couraging in terms of SNR performance although the extracted
signal is often severely distorted. We believe that this problem
can be solved by using approximations of the cost function (2)
which include the termK[W−1(t)]. This will be the subject of
future research.
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Figure 2: Power Spectrum Magnitude of the original and ex-
tracted signals for the “control loop” (Speaker Combination:
M2-M1, top) and “unconstrained” (Speaker Combination: F2-
M1, bottom) versions of the proposed algorithm.Tr = 130 ms.

.

A. Appendix
If we define γ(p) � E[ y(t + p) y(t) ] and Ap �

E[x(t + p) xT (t) ], we haveσ 2
δ = γ2(0)−γ2(1)

γ(0)
and α1 =

γ(1)
γ(0)

. The derivatives ∂
∂w(q)

σδ and ∂
∂w(q)

α1 respectively read

∂

∂w(q)
σδ =

1

σδ

�
L−1�
l=0

Al−pwl − γ(1)

γ2(0)
·

�
γ(0)

L−1�
l=0

(Al−p+1 + Al−p−1)wl − γ(1)

L−1�
l=0

Al−pwl

��
(20)

and

∂

∂w(q)
α1 =

1

γ2(0)

�
γ(0)

L−1�
l=0

(Al−p+1 + Al−p−1) wl

− 2 γ (1)

L−1�
l=0

Al−pwl

�
. (21)
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