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Abstract—One challenging problem for robust speech recog-
nition is the cocktail party effect, where multiple speaker signals
are active simultaneously in an overlapping frequency range. In
that case, independent component analysis (ICA) can separate
the signals in reverberant environments, also. However, incurred
feature distortions prove detrimental for speech recognition. To
reduce consequential recognition errors, we describe the use of
ICA for the additional estimation of uncertainty information.
This information is subsequently used in missing feature speech
recognition, which leads to far more correct and accurate
recognition also in reverberant situations at RT60 = 300ms.

I. INTRODUCTION
The application of speech recognition in real-world situa-

tions still suffers from insufficient robustness. Many scenarios
which appear interesting, for example the use of portable
mobile devices which can accept speech input with sufficiently
large vocabulary, to take notes, offer translations or navigation
information, require close talking microphones for acceptable
reliability. Especially when there is interference in a frequency
range overlapping that of speech, such as babble noise, or
when reverberation times are long, speech recognition is
severely degraded.
In many such cases, the use of blind source separation

techniques can be very beneficial to improve recognition
results. However, more recent techniques, which apply non-
linear masking functions to improve separation results further,
can actually deteriorate recognition performance due to the
consequential feature distortions [1]. In the following, we
describe an integrated approach for systematically dealing with
these problems.
Toward that goal, first, ICA with time frequency masking

is applied and in addition to the speech estimate itself, we
also estimate the error variance incurred by time-frequency
masking. This error estimate is transformed from the domain
of preprocessing, in our case the short-time spectrum, to the
domain of speech recognition, in our case the mel cepstrum
domain. However, the described approach is capable of almost
arbitrary, nonlinear transformations, giving great flexibility in
the choice of preprocessing domain and recognition features.
Finally, the error estimate is used by a missing feature speech
recognizer to compensate for the feature distortions incurred
by masking as shown in Figure 1.
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Fig. 1. Blockdiagram with Data Flow.

The following Sections II through V describe the algorithms
used for obtaining the demixed signals, the time-frequency-
mask and the estimated variance. Section VII continues by
describing the transformation of the uncertain features to
the recognition domain and the subsequent missing feature
recognition. The test data and the experiments and results are
detailed in Section VIII and conclusions are drawn in Section
IX.

II. INDEPENDENT COMPONENT ANALYSIS
In order to deal with convolutive mixtures also, independent

component analysis was carried out in the frequency domain.
For this purpose, the STFT is computed of all microphone
signals, so that the mixing system can be modeled by

X(f, τ) ≈ H(f)S(f, τ)

=
N∑

n=1

H·,n(f)Sn(f, τ) (1)

when the frames are chosen with sufficient length. H·,n(f)
denotes the n’th column of the mixing matrix, and Sn(f, τ)
is the value of source n in frequency f at time τ .
For the purpose of source separation, a complex valued

FastICA [2] was computed and further improved by a natural
gradient implementation of InfoMax [3], as described in more
detail in [4], [5]. This results in an unmixing matrixW, which
is used to obtain estimated source signals via

Y(f, τ) = W(f)X(f, τ). (2)

The estimated sources can, due to the inherent ambiguities of
ICA, be arbitrarily scaled and permutated versions of the true
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source signals, which makes an additional permutation and
scale correction necessary.

III. BASIS VECTOR CLUSTERING AND PERMUTATION
CORRECTION

In order to detect permutations, the effect of the estimated
mixing matrix was considered,

X(f, τ) = W(f)−1Y(f, τ)

= [a1(f),a2(f), . . . ,aN (f)]Y(f, τ), (3)

where the estimated mixing matrix is written in terms of
its constituent column vectors W−1 = [a1,a2, . . . ,aN ].
Comparing (3) with (1) shows that the columns of W−1

correspond to the columns of H(f), the matrix containing the
values of the room transfer function for each frequency. Thus,
the basis vectors an(f) should correspond to H·,n(f) in those
time-frequency bins, where only source n is active. As long
as the mixing process can be approximated by an anechoic
model, the basis vectors should form clusters, one for each of
the sources, after appropriate normalization. For this purpose,
the basis vectors are normalized concerning both phase and
amplitude. For phase normalization, they are first normalized
with respect to a reference sensor K and secondly frequency
normalized, which gives

ani(f) = |ani(f)| exp

⎛
⎝j

arg
(

ani(f)
aKi(f)

)
4fc−1dmax

⎞
⎠ ; n, i = 1 . . . N

(4)
as a normalized vector that only varies in phase between

−
π

2
≤ arg(ani(f)) ≤

π

2
, (5)

which is important for computing a distance measure between
vectors [5]. Here, c is the velocity of sound and dmax stands
for the greatest inter-sensor distance between the reference
sensor K and all other microphones n = 1 . . . N . Finally,
amplitude normalization takes place according to

ai(f) =
[a1i(f), a2i(f), ..., aNi(f)]T

||ai(f)||
. (6)

|| · || denotes the Euclidean norm of the basis vectors. Af-
ter the normalized basis vectors an(f) are thus determined,
clustering of basis vectors takes places in order to determine
one cluster for each of the active sources. For this purpose,
a k-means algorithm is employed, which results in estimated
clusters C1 . . . CN , associated with each of the N sources. The
centroid of each cluster n is determined via

cn ←
∑
a∈Cn

a

|Cn|
, cn ←

cn

||Cn||
(7)

with |Cn| denoting the number of vectors in the n’th cluster
[5].
At each frequency f , ICA produces a set of basis vectors

an(f) as components of the inverse unmixing matrix W−1.
Permutation correction consists of re-ordering these column
vectors in such a way, that the result corresponds best with

the order of cluster centers Cn, where the degree of corre-
spondence is measured by computing the sum of euclidean
distances between re-ordered basis vectors and cluster centers.

IV. TIME-FREQUENCY MASKING
After permutation correction, a time-frequency maskM is

applied according to

ỹn(f, τ) = Mn(f, τ)yn(f, τ) (8)

to improve separation results further. The mask is a soft
mask, whose value is based on the angle θn(t, τ) between the
observed vector X(f, τ) and the basis vector an(f) associated
with source n. This angle is computed in a whitened space,
where X(f, τ) and a(f) are premultiplied by a whitening
matrix V, which is the inverse square root of the sensor
autocorrelation matrix, V(f) = R

−1/2
xx . From θn(t, τ), the

mask is determined by the logistic function

Mn(θn) =
1

1 + eg(θn−θT )
. (9)

Here, g describes the steepness of the mask and θT is the
transition point, where the mask takes on the value 1

2 . More
details on the mask computation can be found in [5].

V. ESTIMATION OF VARIANCE INFORMATION
In order to estimate the feature uncertainty, two cases were

distinguished. If the speaker under consideration, e.g. speaker
n, is active in the given time-frequency bin, the observed
vectorX(f, τ) should correspond well with the cluster of basis
vectors cn(f) of this speaker, after it has been normalized
according to (4) and (6) to yield X(f, τ). On the other hand,
if speaker n is inactive at (f, τ), the normalized X(f, τ) will
likely correspond to another cluster center cj(f). Thus, an
hypothesis Hn was defined as “speaker n is dominant at
(f, τ)”, and a decision regarding its value was made for each
speaker according to

Hi = p(si is dominant) > p(sj is dominant) ∀j �= i. (10)

The probability of each speaker’s dominance was assessed by
means of a Gaussian model for the basis vector clusters

p(X(ω, t)|Ci) = N (X(ω, t), ci,Σi), (11)

with N as a Gaussian distribution of X whose mean and
covariance parameters are ci and Σi, the center and variance
of cluster Ci. This model was used to calculate

p(si is dominant) ≈

p(Ci|X(ω, t)) =
p(X(ω, t)|Ci)P (Ci)∑N

j=1 p(X(ω, t)|Cj)P (Cj)
. (12)

Based on the value of the hypothesis Hn, the error of the
estimate ỹn(f, τ) was computed, under the assumptions that
• in periods of speaker activity, errors are underestimation
errors due to excessive masking, whereas

• in periods, where the speaker is dominated by another
signal, the error is overestimation due to insufficient
masking.
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These errors were estimated separately by

σỹn,o = yn(f, τ) (13)

for overestimation and

σỹn,u = yn(f, τ)− ỹn(f, τ) (14)

for underestimation errors and combined to

σỹn
= σỹn,oHn + σỹn,uHn. (15)

VI. PROPAGATING VARIANCE INFORMATION TO SPEECH
RECOGNITION FEATURE DOMAIN

The output of source separation consists of the estimated
speech features ỹspec(f, τ) and an associated variance estimate
σỹspec

(f, τ) for each source. This section describes how this
data is processed to obtain the features in the mel cepstrum
domain, ỹcep(t, τ), together with associated variance estimates
σỹcep

(t, τ). However, the methods used here are not limited to
this specific set of recognition features but can be used for a
wide set of linear as well as nonlinear feature transforms, so
that speech processing and speech recognition can be carried
out in domains which are related to each other by almost
arbitrary transforms1, while still passing variance values from
the preprocessing to the recognition stage. Since the trans-
formation between the complex speech spectrum and the mel
cepstrum, which is used here, consists of linear as well as
nonlinear transformation stages, and since analytic calculations
are simple for the linear and computationally intensive for the
nonlinear transforms, the feature transformation was carried
out stage by stage.
In linear stages of transformation, the analytic solution

is easily computed. For a vector valued Gaussian random
variable m which is transformed linearly to n = Tm, the
mean and the covariance of the transformed variable n are

μn = Tμm (16)

and
Σn = TΣmTT . (17)

This result also holds for mixtures of Gaussian densities,
when means and covariances are computed separately for each
component. Thus, means and variances can be easily computed
for the linear transformation stages, and only the nonlinear
stages need to be considered in more detail.

A. Analytical Solution
When a random variable v1 is transformed nonlinearly to

v2 = T (v1), the resulting probability distribution can be found
by first computing the cumulative distribution of v2 via

P (v2 < V ) =

∫
v1:T (v1)<V

pv1(v1)dv1. (18)

1Recognizer features v2 can be arbitrary, nonlinear functions of preprocess-
ing features v1 at time t. They can also be functions of v1(t),v1(t −
1),. . . ,v1(t − k), as long as it is possible to give a finite state space rep-
resentation of the transformation. In contrast, transformations with hysteresis
do not fit into the framework.

The derivative of this cumulative distribution is the desired
probability density pv2(v2). However, we are interested only
in the first two moments of the output distribution. Thus,
computing the entire pdf is not necessary, and rather, the output
statistics can estimated directly via

μv2 =

∫ ∞

−∞

T (v1)pv1(v1)dv1 (19)

and

σv2 =

√∫ ∞

−∞

(T (v1)− μv2)2pv1(v1)dv1. (20)

B. Unscented Transform
As a flexible approximation to the above analytical integra-

tion, which can be used with an almost arbitrary recognizer
parameterization the Unscented Transform has been employed
to compute the effect of the nonlinear transformations on the
uncertain features. It consists of the following steps:
• Given the d-dimensional distribution of processing fea-
tures v1, (for example the distribution of ỹ in the spectral
domain with NFFT dimensions) a set of D so-called
sigma points P = {p1, . . . , pD} is calculated, which
capture the statistics of the features up to the desired
order.

• The sigma points are propagated through the nonlinearity
to form a set of transformed points Q = g(P) =
{q1, . . . , qD}.

• The statistics of v2 = g(v1) are then approximated up
to the required order by the appropriate statistics of the
transformed set Q, e.g. by the mean Q and covariance
ΣQQ as the first and second order statistics of v2, which
here corresponds to the cepstral features ỹcep.

This approach is also illustrated in Figure 2.
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Fig. 2. The sigma points of the signal probability distribution
are transformed to obtain an estimate of the statistics after the
transformation.

Compared to Monte Carlo simulation, this algorithm has the
advantage of efficiency: Whereas a large set of points needs to
be simulated to obtain low errors in Monte Carlo simulation,
using the unscented transform, only 2d+1 points are simulated
for each feature vector, where d is the feature vector size [6].

VII. MISSING FEATURE RECOGNITION
The proposed method is intended for speech recognition

systems based on statistical speech models, which, in principle,
may use features in any appropriate domain. In the case
presented here, speech recognition is carried out via Hidden
Markov Models using Mel-Frequency Cepstral Coefficients
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(MFCCs). The recognizer is a Matlab implementation of a
phoneme-based HMM recognizer, in which the output distri-
butions are modeled by Mixture of Gaussian models.

A. Modified Imputation for Data with Variances
In HMM speech recognition, the probability of an obser-

vation vector o of speech features, e.g. ỹcep in our case, is
evaluated at each frame for all HMM-states. For this purpose,
the model states q are equipped with output probability distri-
butions denoted by bq, where bj(o) gives the probability that
observation vector o will occur at time t when the Markov
Model is known to be in state j at that time, so:

bj(o) = p(o(t) = o|q(t) = j). (21)

For the recognition of given, fixed observation vectors o, the
probability distribution bq can be evaluated for the available
vector o. This is the customary computation of output prob-
abilities, denoted by p

o|q(o|q). With additional information
from the preprocessing stage, however, rather than only the ob-
servation o, its entire pdf p(o|x) is approximately given. Thus,
a new approach, termed modified imputation has been devel-
oped for calculating observation likelihoods, which makes use
of all available information: output probability distributions
of the states p(o|q) as well as the observation probability
distributions obtained from the preprocessing stage, p(o|x).
To evaluate the likelihood of an HMM state, the likelihood

of the current observation p(o|q) given q is combined with the
likelihood of the observation given the preprocessing model
p(o|x) via

p(o|x, q) =
p(o, x, q)

p(x, q)

=
p(o, x|q)

p(x|q)

=
p(o|q)p(x|o, q)∫

o
p(x|o, q)p(o|q)do

. (22)

All statistical dependencies between the microphone signals
x and the HMM state q are assumed to be captured in the
feature vector o. Therefore p(x|o, q) = p(x|o) and

p(o|x, q) =
p(o|q)p(x|o)∫

o
p(x|o)p(o|q)do

=
p(o|q)p(o|x)p(x)

p(o)
∫
o

p(x|o)p(o|q)do
. (23)

In (23), the integral in the denominator as well as p(x) are
independent of the feature vector o. But since the equation
will only be needed for the optimization problem stated in
25, they can be considered invariant scale factors. Defining a
likelihood function p′ via

p′(o|x, q) =
p(o|q)p(o|x)

p(o)
∝ p(o|x, q) (24)

allows to estimate o by

ô = arg max
o
′

p(o′|x, q) = arg max
o
′

p′(o′|x, q). (25)

Assuming a uniform prior for o, the term to be maximized
is

ô = arg max
o
′

p(o′|q)p(o′|x). (26)

For a Gaussian model, the optimization problem becomes

ô = arg max
o
′

e−
1

2
((o′−μx)T Σ−1

x (o′−μx)+(o′−μq)T Σ−1

q (o′−μq))

and the maximum likelihood estimate ô can be obtained from

Σ−1
x (ô− μx)

!
= −Σ−1

q (ô− μq)

⇔ ô = (Σ−1
x + Σ−1

q )−1(μqΣ
−1
q + μxΣ−1

x ).

This resulting estimate ô can be used for recognition in
the same way as o is used in (21) when the features are
considered given and fixed. For Gaussian mixture models, the
same computations need to be carried out for all mixtures
separately.

B. Uncertainty Decoding
As an alternative to modified imputation, the use of un-

certainty decoding was also investigated. In this method,
described in [7], the original aim is for an improvement of
noisy speech recognition. When speech is additively corrupted

Noise

Removal

o p(o|s)s

n

Fig. 3. Signal model for uncertainty decoding.

by zero-mean Gaussian noise, with the signal model shown in
Figure 3, the probability of observing a feature vector o given
the clean speech signal s is

p(o|s) = N (o, s, σ2
n). (27)

For the purpose of recognition, the distribution p(o|q) is
needed. This can be obtained from

p(o|q) =

∫ ∞

−∞

p(o, s|q)ds (28)

=

∫ ∞

−∞

p(o|q, s)p(s|q)ds (29)

=

∫ ∞

−∞

p(o|s)p(s|q)ds. (30)

When a single mixture i in the mixture model of state q is
considered, this leads to

p(o|q) =

∫ ∞

−∞

N (o, s, σ2
n)N (s, μqiσqi)ds (31)

= N (o, μqi, σ
2
qi + σ2

n)ds (32)

which is evaluated for each mixture.
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VIII. EXPERIMENTS AND RESULTS

A. Speech Data

Recordings were made in an office room with dimensions
of about 10m × 15m × 3.5m. The distance between each
of the two loudspeakers and the array center was set to one
meter. At this distance, the reverberation time was measured to
be 300ms. Simultaneous speech signals of two male speakers
of equal mean amplitude from the TIDigits database [8] were
played back and recorded in two different setups of loudspeak-
ers, with the angles of incidence, relative to broadside, once
set to (−45◦, 25◦) (Configuration A) and the other time to
(−10◦, 25◦) (Configuration B). Two microphones, Behringer
ECM 8000, placed 2.1cm apart, were used to record the
signals.

B. Recognition Performance Measurement

To measure recognition performance, the number of refer-
ence labels (R), substitutions (S), insertions (I) and deletions
(D) is counted. Then, two criteria can be calculated:
The correctness is the percentage of correctly hypothesized
words

PC =
R−D − S

R
. (33)

Correctness has one disadvantage for judging ICA perfor-
mance though. Since it ignores insertion errors, it will not
penalize clear audibility of the interfering speaker during
periods, when the desired speaker is silent. Therefore, a second
important criterion is recognition accuracy, defined as

PA =
R−D − S − I

R
. (34)

C. Reference Results

In order to evaluate the effect of ICA and of subsequent
time-frequency-masking (TF-masking) on speech recognizer
performance, the recognition correctness and accuracy were
measured for both configurations. The results were obtained
with a speaker independent recognizer trained on the clean
TIDigits database [8], without adaptation to the room. For
both scenarios, the recognition rate for clean, but reverberant,
data was 97.1% PC and 94.1% PA. Results for the recordings
and the ICA outputs are shown in Table I.

TABLE I
AVERAGE CORRECTNESS (PC) AND ACCURACY (PA) OF OVERLAPPING

AND SEPARATED SPEECH, WITHOUT AND WITH TF-MASKING.

Config. A Config. B
mixtures
PC 67.5% 74.2%
PA 40.0% 41.5%

ICA only
PC 84.2% 81.4%
PA 60.5% 57.5%

ICA + TF-Mask
PC 93.6% 71.4%
PA 79.8% 59.7%

As can be seen, by time-frequency masking alone, the
average correctness of the ICA results is not improved, and
though accuracy gains are notable in some cases, they are not
observed reliably. This is likely due to the nonlinear distortions
caused by time-frequency masking, which are great enough to
outweigh the separation gain of time-frequency masking.

D. Results with Variance Information
When variance information is used to aid in decoding, the

accuracy as well as the correctness improves greatly for all
configurations, as seen in Table II.

TABLE II
RECOGNITION RATES OF TIME-FREQUENCY-MASKED SPEECH BY USING

FEATURE UNCERTAINTIES
Config. A Config. B

Modified Imputation
PC 94.1% 96.4%
PA 91.2% 85.0%

Uncertainty Decoding
PC 94.7% 93.4%
PA 86.8% 84.0%

IX. CONCLUSIONS
A new framework has been presented for using uncertain

features, derived from ICA with a probabilistic source activity
model, to aid in recognition of overlapping speech in rever-
berant environments. Through use of the unscented transform,
it becomes possible to use uncertainty information from the
time-frequency domain to derive the values of uncertain fea-
tures in a suitable feature domain for speech recognition. The
use of this technique for combining time-frequency domain
ICA with an MFCC speech recognizer has been demonstrated
and resulted both in significantly increased correctness as well
as accuracy.
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