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ABSTRACT

The problem of blind source separation (BSS) from convolutive
mixtures is often addressed using independent component analysis
in the frequency domain. The separation performance with this ap-
proach degrades significantly when only a short amount of data is
available, since the estimation of the separation system becomes in-
accurate. In this paper we present a novel approach to the frequency
domain BSS using frequency normalization. Under the conditions
of almost sparse sources and of dominant direct path in the mixing
systems, we show that the new approach provides better performance
than the conventional one when the amount of available data is small.

1. INTRODUCTION

There exist several methods to separate an instantaneous linear mix-
ture of multiple sources. If the sources are statistically independent,
independent component analysis (ICA) algorithms are commonly
used [1]. These can find a separation system up to two ambigui-
ties: an arbitrary permutation in the ordering of the source estimates
and an arbitrary gain applied to each source.

In many practical applications, such as the separation of acous-
tic mixtures, it is necessary to deal with convolutive mixtures. A
possible approach to these is to move the problem to frequency do-
main [2], using tools like the short time Fourier transform (STFT),
making the convolutive mixture approximately become a collection
of instantaneous mixtures, one for each frequency bin. For each of
these, a separation matrix needs to be estimated.

Sometimes the amount of available data is small. For example,
at the initialization of real time systems, or when it is necessary to
track a changing mixing system. With the frequency domain BSS
approach the performance in these situations can be very poor, due
to the large amount of separation matrices to estimate.

An obvious approach to improve the accuracy in the estimation
of the separation parameters is to reduce the number of such param-
eters. If the mixing system has some structure it may be possible to
capture its most significant aspects using a reduced number of pa-
rameters. A naive way to attempt such reduction is to use a smaller
frame size in the STFT analysis. This can only provide a limited suc-
cess, since with a small frame size the instantaneous mixture model
at each frequency becomes less accurate.

In this paper we present a novel approach to perform the BSS
of convolutive mixtures using the STFT. The new method allows to
obtain a reduced number of separation parameters while using a long
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STFT frame. It relies on two assumptions often found in speech ap-
plications: the dominance of the direct path and the sparseness of
the sources. Under these assumptions, we propose a normalization
method which can remove from the measurement vectors the fre-
quency dependence introduced by the mixing system, allowing one
to perform ICA over multiple frequency bins simultaneously. Fi-
nally, we present experimental results which illustrate how BSS us-
ing this approach outperforms conventional frequency domain BSS
(FD-BSS) in the separation of speech sources when the amount of
available data is small.

The normalization scheme presented here derives from one used
in the past to remove the frequency dependence from the inverse of
the separation system, in the context of permutation alignment [3].
This previous normalization mechanism has also been used to nor-
malize the measurement vectors in [4], but there the purpose was
again to allow clustering, and not to perform ICA on the normal-
ized data. In this paper we introduce a simple modification to this
normalization scheme to make it preserve source information.

The general approach in this paper has some similarity in aim to
the one proposed in [5] where, also under the assumption of free-
field propagation, a frequency invariant transformation is used to
transform the convolutive problem into an instantaneous one. The
main difference is that the frequency normalization approach pro-
posed here does not require a big number of sensors. Taking into
account the sparseness of the sources, only two sensors are required,
although more can be used. Also, our approach does not require
knowledge about the location of the sensors, other than a maximum
bound to the distance between each sensor and a reference sensor.

2. CONVENTIONAL FREQUENCY-DOMAIN BSS

An acoustic mixture is often modelled as the linear combination of
several statistically independent sources, each of which has been
transformed through a different linear time-invariant acoustic response,

xj(t) =

NX
k=1

R−1X
r=0

hjk(r)sk(t − r) for j = 1 . . . M, (1)

where t is the discrete time index, and N and M are the number
of sources and microphones. In the blind separation problem, the
mixing filters hjk and the sources sk are unknown, and the goal is to
find an estimate of sk from the mixture xj , knowing that the sources
are statistically independent from each other. In this paper we will
focus in the case N = M .

If the length of the mixing filters is big, as it is often the case
with acoustic mixtures, the computational cost can be reduced by
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Fig. 1. Frequency domain blind source separation (FD-BSS).

moving the problem to frequency domain. Figure 1 shows the dif-
ferent stages of this approach.

The first step is to perform the L-point STFT of the measured
signals, xj(t):

xj(f, t) =

L/2−1X
r=−L/2

xj(t + r)win(r)e−i2πfr
, (2)

where f is the frequency index, and win is the analysis window. If
this window is long enough, the mixing system becomes approxi-
mately instantaneous. In vector notation,

x(f, t) = H(f)s(f, t), (3)

where x(f, t) = [x1(f, t) . . . xM (f, t)]T is the vector of measure-
ments at each time-frequency point, s(f, t) is the corresponding source
signal vector, and H(f) is a square scalar (complex) mixing matrix.

The next step, as shown in Figure 1 is to use an ICA algorithm
to estimate a separation system W (f) from the vectors x(f, t). The
conventional approach to this is to perform ICA separately for each
frequency, and to use additional knowledge about the problem to
choose the permutation for each separation matrix consistently.

3. PROPOSED APPROACH

The approach proposed in this paper replaces the ICA block in Fig-
ure 1 by a new procedure based on the frequency normalization of
the measurement spectrograms.

The mixing matrix in (3), H(f), is frequency dependent. The
goal of the frequency normalization is to obtain an alternative repre-
sentation of the measurement vectors that makes them relate to the
sources through a frequency independent mixing matrix. With this
representation, it becomes possible to rearrange the spectrograms
by grouping multiple frequency lines together, and to apply ICA on
each of such groups of frequency bins as one would do on a time
sequence of measurements. This reduces the number of separation
matrices to estimate, while preserving the FFT frame size.

Figure 2 illustrates this process. First, the original time-frequency
measurement vectors are normalized, as explained in Section 3.2 be-
low. Then, frequency bins are grouped and ICA is applied on each
group (Section 3.3). Finally, the resulting separation matrices are de-
normalized as explained in Section 3.4. The next section presents the
two assumptions required for the justification of this new method.

3.1. Assumptions

The following two assumptions will be used to validate the normal-
ization equation. The experimental results presented later show how
the approach gives useful results even if the assumptions are only
approximately satisfied.

1. The mixing system consists of a direct propagation path for
each source, with some frequency-dependent attenuation q(f):

hjk(f) =
q(f)

djk
exp

ˆ
−i2πfc

−1
djk

˜
, (4)

ICA

ICA

ICA

ICA

W (8)

W (1)

Ŵ (4)
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Fig. 2. Main steps for the proposed approach. The measured time-
frequency vectors, shown as a spectrogram on the left, are normal-
ized, and the frequency bins are grouped forming several separation
bands (four in the figure). ICA is then performed on each of them.

where djk is the distance between the k’th source and the j’th
sensor, and c is the speed of sound.

2. The time-frequency representation of the sources is sparse.
This means that at any time-frequency point at most one source
is active. This allows to express the measurements as:

xj(f, t) = hjk(f)sk(f, t), for some k (5)

3.2. Normalization equation

The normalized measurement values, x̂j(f, t), are constructed by
modifying the phase of the original measurement values as follows:

x̂j(f, t) = |xj(f, t)|exp

0
@i

arg
“

xj(f,t)

xJ (f,t)

”
4fc−1dmax

+ i arg (xJ (f, t))

1
A,

(6)
where J is the index for one of the sensors chosen as reference, and
dmax is the maximum distance between this reference sensor and
any other. Indexes f and t cover the complete time-frequency range.

Equation (6) involves a non-linear transformation of the phase,
but direct substitution of equations (4) and (5) into (6) gives the fol-
lowing relationship between the source and the normalized vectors:

x̂(f, t) = ĤC1(f)s(f, t), (7)

where Ĥ is an unknown frequency independent mixing matrix, whose
elements relate to the unknown time delay differences:

ĥjk =
1

djk
exp

„
−i

π

2

(djk − dJk)

dmax

«
, (8)

and C1(f) is a diagonal matrix. We will assume that Ĥ is invertible.
Thus, the assumptions lead to a normalized spectrogram that re-

lates to the source spectrogram through a unique mixing matrix and
through a frequency dependent scaling. It is thus possible to perform
ICA once on the whole spectrogram or on a subset of the frequency
bins, as discussed next. The frequency-dependent scaling can be ag-
gregated with the arbitrary scaling introduced by ICA.

3.3. Separation of the normalized data

As shown in Figure 2, the f axis of the normalized spectrogram is
divided in several bands (groups of adjacent frequency bins), each
of them with equal width. ICA is then applied on the x̂(f, t) vectors
within each band. We use the term separation band to refer to each
of these groups of frequency bins on which a single execution of
ICA is applied. In the case of conventional FD-BSS, each separation
band consist of one single frequency bin.
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Fig. 3. Configuration of the experiment room.

In the experiments described below, ICA was performed on each
separation band using a complex version of FastICA [1], and the
solution was improved by using InfoMax [6] and the natural gradient
using a non-linear function based on the polar coordinate [7].

These techniques assume that there is some underlying random
process, whose statistics can be estimated from the available “se-
quence” of measurements. This corresponds to some kind of ergod-
icity requirement. As it is often done in speech signal processing,
we will assume that this requirement is satisfied to some extent, and
verify it indirectly through the experimental results.

In the following discussion we will assume that ICA has been
applied successfully on a group of frequency bins, so that a separa-
tion matrix Ŵ has been obtained. This matrix will thus relate to the
unknown matrix Ĥ in equation (7) through the following equation:

Ŵ = PDĤ
−1

, (9)

where D is a diagonal matrix which accounts for the gain ambiguity,
and P is a permutation matrix which accounts for the permutation
ambiguity. The desired (unnormalized) separation filter should relate
in a similar way to the inverse of the original mixing matrix H . In
the next section the computation of such a filter is described.

3.4. De-normalization of the separation system

To compute the de-normalized separation system, it is convenient to
work with the inverse of Ŵ , which is in turn related to the matrix Ĥ:

Â = Ŵ
−1 = ĤD

−1
P

−1
. (10)

Again, D−1 is a diagonal matrix and P−1 is a permutation matrix.
Note that although Ĥ is unknown, its relation to the parameters of
the mixing system is known (8). This knowledge lets one define the
following as the de-normalization equation for the elements of Â:

ajk(f) = |âjk|exp

„
i arg

„
âjk

âJk

«
4fc

−1
dmax

«
(11)

where âjk are the elements of Â, and ajk(f) are the elements of the
de-normalized matrix A(f). Substituting (4), (8) and (10) into (11),

W (f) = A(f)−1 = PC2(f)H−1(f), (12)

where C2(f) is a diagonal matrix. This equation means that W (f)
is a separation system. The arbitrary scaling caused by C2(f) can

be removed using the minimum distortion principle [8]. If multiple
bands are used, permutation inconsistencies between their A(f) ma-
trices are avoided by normalizing and clustering their columns [3].

4. EXPERIMENTS SETUP

We have carried out several experiments to analyze the performance
of the proposed approach in real acoustical conditions. The mix-
ture segments were prepared from a set of anechoic speech record-
ings mixed through several different room response recordings, us-
ing two sources and two microphones. The different mixture seg-
ment lengths used were 0.5, 0.25 and 0.16 seconds. For each of
these lengths, the experiments were repeated for several different
source segments, and performance results were averaged.

The source signals for each experiment were constructed from
recordings of Japanese and English speakers, both male and female,
sampled at 8 kHz. To simplify the analysis of the results, the source
segments were selected so that the difference of energy between both
sources in each segment was not greater than 10dB.

The setup for the room recordings is shown in Figure 3. Three
different recordings were made, each with the two loudspeakers at a
certain distance from the center between the two microphones. Also,
synthetic anechoic room responses for the same inter-microphone
distance and source directions (far field) were generated.

Estimates of the sources were computed using both the proposed
approach and conventional FD-BSS. For the proposed approach a
STFT frame of 512 samples was used, and experiments were per-
formed using 1, 4, 16 and 256 separation bands. For the conven-
tional FD-BSS, the STFT frame size was twice the number of bands,
except for the case of one band, which corresponds to time domain
instantaneous BSS. In all cases the frame shift was one fourth of
the frame length, and a Hanning window was used. The resulting
number of available data points (samples) for each ICA execution is
sumarized in Table 1.

Proposed approach
Separation bands 256 16 4 1
Samples per band, 0.5sec sources 28 448 1792 7168
Samples per band, 0.25sec sources 12 192 768 3072
Samples per band, 0.16sec sources 7 112 448 1792

Conventional FD-BSS
Frame size 512 32 8 1
Samples per bin, 0.5sec sources 28 497 1997 4000
Samples per bin, 0.25sec sources 12 247 997 2000
Samples per bin, 0.16sec sources 7 157 637 1280

Table 1. Available number of samples per separation band

Separation performance was evaluated with the signal to inter-
ference ratio (SIR) gain (SIR at the outputs minus SIR at the sen-
sors), averaged across all the sources for each experiment condition.

5. RESULTS

The separation performance results clearly illustrate the benefits due
to the reduction in the number of estimated separation matrices. Fig-
ure 4 shows how, when using the proposed approach, SIR results
improve as the number of separation matrices to estimate (abscissa
axis) is reduced. In contrast, the performance of conventional FD-
BSS drops as the number of separation matrices is reduced, due to
the corresponding reduction in the frame size.
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Fig. 5. Average SIR gain for different signal lengths. For the nor-
malized BSS one separation band was used. For the FD-BSS the
experiments were performed with several different frame sizes, and
the sizes which yielded best separation performance were chosen.

The results in Figure 4 show how conventional FD-BSS per-
forms best for some intermediate frame size. The degradation of the
separation performance for big frame sizes (left side of the figure)
can be attributed to the reduced number of frequency samples used
to estimate each separation matrix (see Table 1). The degradation for
small frame sizes (right side of the figure), on the other hand, can be
attributed to the fact that a smaller frame size makes the assumption
of instantaneous mixture in frequency domain less accurate and con-
strains the separation filter length too much. The proposed approach
avoids using a small frame size.

Figure 5 illustrates the variations in performance when different
amounts of data are available. The advantage of using frequency
normalization is specially clear for very short signal lengths.

Finally, Figure 6 shows the separation performance for different
mixing systems with different direct to reverberant ratios. As this ra-
tio increases, the free-field assumption becomes more accurate, and
the separation performance increases. Using frequency normaliza-
tion, this increment becomes clearly higher.

6. CONCLUSION

We have presented a novel approach to perform blind separation of
convolutive mixtures that outperforms conventional FD-BSS for in-
put signals of small length. The approach is based on a special nor-
malization of the spectrogram of the measured signals.

We have shown that, under the assumptions of free-field mix-
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Fig. 6. Average SIR gain for sources at different distances. The
direct-to-reverberant ratio increases for closer sources. The anechoic
situation has infinite direct-to-reverberant ratio. The STFT frame
size and number of separation bands were chosen as for Figure 5.

ture and sparse sources, the normalized data relates to the sources
through a matrix of frequency independent mixing parameters. This
property allows one to combine multiple frequency bins for the esti-
mation of a single separation matrix, reducing the estimation error.

Finally, we have shown through experimental evaluation how
this approach improves the separation performance even when the
free-field and the sparseness assumptions are not strictly satisfied.
This makes the new approach a useful tool for BSS applications
where only a small amount of data is available, for example when
fast initialization or tracking are required.
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