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ABSTRACT

This paper presents a robust and precise method for solving
the permutation problem of frequency-domain blind source
separation. It is based on two previous approaches: the di-
rection of arrival estimation approach and the inter-frequency
correlation approach. We discuss the advantages and disad-
vantages of the two approaches, and integrate them to ex-
ploit the both advantages. We also present a closed form
formula to calculate a null direction, which is used in es-
timating the directions of source signals. Experimental re-
sults show that our method solved permutation problems al-
most perfectly for a situation that two sources were mixed
in a room whose reverberation time was 300 ms.

1. INTRODUCTION

Blind source separation (BSS) is a technique for estimat-
ing original source signals using only sensor observations,
which consist of mixtures of the original signals. If the
mixture is instantaneous, we can directly apply independent
component analysis (ICA) [1, 2] to separate mixed signals.
In a real room environment, however, signals are mixed in
a convolutive manner with reverberations. This makes the
BSS problem difficult since we need a set of filters, not just
scalars, to separate signals. One of the major methods to
obtain such separating filters is frequency-domain BSS [3–
10], where a convolutive mixture in the time domain is con-
verted into multiple instantaneous mixtures. Thus, we can
apply ICA to instantaneous mixtures in every frequency bin.

The problem with frequency-domain BSS is the indeter-
minacy of permutation that is inherent to ICA. We need to
map a separated signal at each frequency to a target source
signal so that we properly reconstruct a separated signal in
the time domain. Various approaches have been proposed
to the permutation problem. Making separating matrices
smooth in the frequency domain is one solution. This has
been realized by averaging separating matrices with adja-
cent frequencies [3], limiting the filter length in the time
domain [4], or considering the coherency of separating ma-
trices at adjacent frequencies [5]. Another approach is based
on direction of arrival (DOA) estimation in the beamform-
ing theory [6, 7]. If source signals are speech, we can em-
ploy the inter-frequency correlations of signal envelopes to

align permutations [8, 9]. Each of these approaches has dif-
ferent characteristics. They may perform well under certain
specific conditions but not others. Therefore, we believe
that integrating some of these approaches is one way of ob-
taining better performance.

In this paper, we propose a new method for solving the
permutation problem, which incorporates two of the previ-
ous approaches. The first is the DOA approach, which is
described in Sec. 3. The second is based on inter-frequency
correlations, which is discussed in Sec. 4. Our new method
is proposed in Sec. 5. The experimental results reported in
Sec. 6 are promising.

The second contribution of this paper is a closed form
formula for calculating a null direction, which is used in es-
timating the directions of source signals (Sec. 3). It dramat-
ically reduces the calculation cost of null directions com-
pared with the conventional method by searching for the
minimum of a directivity pattern.

2. FREQUENCY-DOMAIN BSS

Suppose that P source signals sp(t) are mixed and observed
at Q sensors xq(t) =

∑P
p=1

∑
k hqp(k)sp(t − k), where

hqp(k) represents the impulse response from source p to
sensor q. The goal of BSS is to obtain separated signals
y1(t), . . . , yP (t) that are estimates of the source signals s1(t),
. . . , sP (t). The separating system typically consists of a
set of FIR filters wrq(k) that produces separated signals
yr(t) =

∑Q
q=1

∑
k wrq(k)xq(t − k).

This paper employs a frequency-domain approach where
frequency responses Wrq(f) of the separating filter wrq(k)
are first calculated. By L-point short time DFT, time-domain
signals xq(t) are converted into frequency-domain time-series
signals Xq(f, m), where f = 0, fs/L, . . . , fs(L−1)/L
(fs: sampling frequency), and m is the frame index. As-
sume that X(f, m) is a Q-dimensional vector X(f, m) =
[X1(f, m), . . . , XQ(f, m)]T. To obtain frequency responses
Wrq(f), we solve ICA problem Y(f, m) = W(f)X(f, m),
where Y(f, m) = [Y1(f, m), . . . , YP (f, m)]T and W(f) is
a P × Q matrix whose elements are Wrq(f). Yr(f, m) is a
frequency-domain representation of yr(t).

The ICA algorithm we use is the information maximiza-
tion approach [1] combined with the natural gradient [2]. A
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Fig. 1. Directivity patterns

separating matrix W is gradually improved by the learning
rule ∆W = µ [I− 〈Φ(Y)YH〉]W, where µ is a step-size
parameter, 〈·〉 denotes the averaging operator, and Φ(·) is a
nonlinear function for a complex signal Yr = |Yr| ej·phase(Yr).
We use Φ(Yr) = − ∂

∂|Yr| logp(|Yr |) ej·phase(Yr) assuming
that the density p(Yr) is independent of the phase [10].

An ICA solution has an ambiguity on permutation: if
we permute the rows of W(f), it is still a solution. Thus,
we have to align the rows of W(f) so that Yr(f, m) at all
frequencies correspond to the same source sp(t). This is
the permutation problem. After solving the problem, we
obtain separating filters wrq(k) by applying inverse DFT to
Wrq(f).

3. THE DIRECTION OF ARRIVAL APPROACH

In this section, we first review the method [6, 7] for solv-
ing the permutation problem by estimating the directions of
source signals. If the sensor spacing is appropriately nar-
row (e.g., conditions in Table 1), each row of W(f) usually
forms spatial nulls in the directions of jammer signals and
extracts a target signal in another direction [11]. By an-
alyzing the null directions, we can estimate the directions
Θ(f) = [θ1(f), . . . , θP (f)]T of target signals that every
row of W(f) extracts. Then, we can align permutations
according to Θ(f).

The null directions can be analyzed by plotting the di-
rectivity pattern of each output Yr(f, m). Let dq be the posi-
tion of sensor q (we assume linearly arranged array sensors),
and θp be the direction of source sp (the direction orthog-
onal to the array is 90◦). In the beamforming theory [12],
the frequency response of an impulse response hqp(t) is ap-

proximated as Hqp(f) = ej2πfc−1dq cos θp , where c is the
velocity of propagation. In this approximation, we assume
a plane wavefront and no reverberation. The frequency re-
sponse Brp(f) from a source sp to a separated signal yr can
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Fig. 2. Directivity pattern on a complex plane

be expressed as Brp(f) =
∑Q

q=1 Wrq(f) · ej2πfc−1dq cos θp .
If we regard θp as a variable θ, the formula is expressed as
Br(f, θ) =

∑Q
q=1 Wrq(f) · ej2πfc−1dq cos θ . It changes ac-

cording to the direction θ, and thus is called a directivity
pattern.

Figure 1 shows directivity patterns for two sources. The
upper part (3156 Hz) shows that output Y1 extracts a source
signal originating from around 45 ◦ and suppresses the other
signal coming from around 125◦. With a similar considera-
tion on Y2, we estimate the directions Θ(3156) = [45, 125]T
of the target signals. A simple way to solve the permutation
problem is to permute W(f) at each frequency so that Θ(f)
are sorted. However, not every frequency bin gives us such
an ideal directivity pattern. The lower part of Fig. 1 is the
pattern at a low frequency (176 Hz). We see that a null is
not well formed for Y1 and the null of Y2 is in an obscure
direction. In fact, we cannot estimate Θ(176) or decide a
permutation for this frequency with confidence.

Now we state two problems with this method: 1) direc-
tions of arrival cannot be well estimated at some frequen-
cies, especially at low frequencies where the phase differ-
ence caused by a sensor spacing is very small, 2) the cal-
culation of null directions by plotting directivity patterns is
time consuming. The first problem will be solved in Sec. 5.

For the second problem, here we provide a closed form
formula for calculating a null direction (only for two sen-
sors). The directivity pattern Br(f, θ) can be simplified as
Br(f, θ) = Wr1(f) + Wr2(f) · ej2πfc−1d cos θ if we assume
d1 = 0 and d2 = d. As cos θ changes from 1 to −1 in ac-
cordance with the change of direction θ, the frequency re-
sponse Br(f, θ) rotates around a circle whose center and
radius are Wr1 and Wr2, respectively (Fig. 2). We see that
spatial aliasing does not occur if 2πfc−1d<π⇔f <c/(2d).
When the distance from the origin is minimized, the plot
corresponds to the null direction θnull . The situation is one
where Wr2 rotated by ej2πfc−1d cos θnull points to the oppo-
site direction of Wr1: angle(Wr2) + 2πfc−1d cos θnull =
angle(Wr1) ± π. Therefore,

θnull = cos−1 angle(Wr1) − angle(Wr2) ± π

2πfc−1d
The sign of ±π is selected so that the numerator is in the −π
to π range. There are some cases where the absolute value
of the argument of cos−1 is larger than 1. This corresponds
to a situation where there is no null in 0◦ ≤ θ ≤ 180◦.
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Fig. 3. Envelopes at different frequencies

4. THE CORRELATION APPROACH

This section discusses an approach to permutation align-
ment based on inter-frequency correlation [5, 8, 9]. We take
the envelope vf

r (m) = |Yr(f, m)| of a separated signal
Yr(f, m) to measure correlations. Let us define the correla-
tion of two signals x(m) and y(m) as cor(x, y) = [〈x · y〉−
〈x〉 · 〈y〉]/(σx ·σy), where 〈·〉 is an averaging operator and σ
is a standard deviation. Based on this definition, cor(x, x) =
1, and cor(x, y) = 0 if x and y are uncorrelated. Envelopes
have high correlations at neighboring frequencies if sepa-
rated signals correspond to the same source signal [8, 9].
Figure 3 shows an example. Two envelopes v1562

1 and v1566
1 ,

as well as v1562
2 and v1566

2 , are highly correlated. Thus, cal-
culating such correlations helps us to align permutations.

Henceforth let π denote a permutation: {1, . . . , P} →
{1, . . . , P}. A simple criterion to decide a permutation π f

of frequency f is to maximize the sum of correlations be-
tween neighboring frequencies within distance D:

πf =argmaxπ

∑
|k−f |≤D

∑
pcor(vf

π(p), v
k
πk(p)), (1)

where πk is the permutation at frequency k. This criterion is
based on local information and has a drawback that mistakes
in a narrow range of frequencies may lead to the complete
misalignment of the frequencies beyond that point. To avoid
this problem, the method proposed in [9] does not limit the
frequency range in which correlations are calculated. It de-
cides permutations one by one based on the criterion:

πf = argmaxπ

∑
p cor( vf

π(p) ,
∑

k∈F vk
πk(p) ), (2)

where F is a set of frequencies in which the permutation
is decided. This method assumes high correlations of en-
velopes even between frequencies that are not close neigh-
bors, although this is not always the case. As shown in Fig.
3, v1566

r and v3516
r do not have a high correlation. There-

fore, this method still has a drawback in that permutations
may be misaligned at many frequencies.

� �
for ( ∀f ) Θ(f) = DOA(f,W(f))
mΘ = 〈Θ(f)〉f /* averaged directions */
F = ∅ /* the set of fixed frequencies */
/* Fix permutations by the DOA approach */
for ( ∀f ) {

if ( confident (Θ(f),mΘ,W(f)) ) {
πf = getPermutation(Θ(f))
F = F ∪ {f}

}
}
/* Fix permutations by the correlation approach */
while ( ∃f �∈ F ) {

for ( ∀f �∈ F ) {
cf =maxπ

∑
|k−f |≤D,k∈F

∑
p cor(vf

π(p), v
k
πk(p))

πf =argmaxπ

∑
|k−f |≤D,k∈F

∑
pcor(vf

π(p), v
k
πk(p))

}
i = argmaxf cf

F = F ∪ {i}
ci = 0

}
� �

Fig. 4. Pseudo-code for the integrated method

5. A ROBUST INTEGRATED APPROACH

In this section, we propose a robust and precise approach
which integrates the two approaches discussed above. We
consider their characteristics below.

robustness The direction of arrival (DOA) approach is ro-
bust since a misalignment at a frequency does not af-
fect other frequencies. The correlation approach is
not robust as discussed in Sec. 4.

preciseness The DOA approach is not precise since the eval-
uation is based on the approximation of a mixing sys-
tem as explained in Sec. 3. The correlation approach
is precise as long as signals are well separated by ICA
since the measurement is based on separated signals.

Our approach benefits from both advantages: the robust-
ness of the DOA approach and the preciseness of the corre-
lation approach. Figure 4 shows the pseudo-code.

We first fix permutations at some frequencies where the
confidence of the DOA approach is sufficiently high. The
procedure confident decides whether the confidence is high
enough. Our criteria for the decision are: 1) the number of
estimated directions is the same as the number of sources,
2) the directions Θ(f) do not largely differ from the aver-
aged directions mΘ, 3) the SNR calculated by the frequency
responses Br(f, θp) for each direction is sufficiently large.

Then, we decide the permutations for the remaining fre-
quencies by the correlation method without changing the
permutations fixed by the DOA approach. The permuta-
tions are decided in order of the sum of correlations with
fixed frequencies k ∈ F within distance |k − f | ≤ D.
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Table 1. Experimental conditions
Length of source signal 6 sec
Direction of sources 50◦ and 120◦ (2 sources)
Distance between 2 sensors d = 4 cm
Reverberation time TR = 300 ms
Sampling rate fs = 8 kHz
Frequency resolution L = 2048

Nonlinear function Φ(Yr) = ej·phase(Yr)

Distance to take correlation D = 3 · fs/L

This approach does not result in a large misalignment
as long as the permutations fixed by the DOA approach are
correct. Moreover, the correlation part compensates for the
lack of preciseness of the DOA approach.

6. EXPERIMENTAL RESULTS

We performed experiments to separate speech signals in a
reverberant environment whose conditions are summarized
in Table 1. We generated mixed signals by convolving a
speech signal sp(t) and an impulse response hqp(t) so that
we can calculate SNRs (signal-to-noise ratios) by

10 log[
∑

r=p

∑
t yrp(t)2] − 10 log[

∑
r �=p

∑
t yrp(t)2],

where yrp(t) =
∑Q

q=1

∑
k wrp(k)xqp(t − k) and xqp(t) =

∑
k hqp(k)sp(t − k). We separated 12 combinations of

speech signals with 4 different methods for comparison:
the DOA approach, the correlation approach based on (1),
the correlation approach based on (2), and our proposed
method. Figure 5 shows the results, where “ave” shows the
average result of 12 combinations for each method.

The performance with “DOA” is stable, but not suffi-
cient. The results with “Cor (1)” and “Cor (2)” are not stable
and sometimes very poor, although most of the time they are
very good. The “Integrated” method offers stable and very
good results. The percentages of the permutations fixed by
the DOA approach with confidence were around 45%. We
additionally obtained optimal permutations by maximizing
the SNR at each frequency. Although this is not a realistic
solution, we can estimate the upper bounds of performance.
The average of “Optimal” was 16.8 dB. Since the average
performance with “Integrated” was 16.3 dB, we consider
that the integrated method performed very well.

7. CONCLUSIONS

We proposed a robust and precise method for solving per-
mutation problem. It integrates two previous approaches:
the DOA approach and the correlation approach. The cri-
terion of the DOA approach is directions which is absolute.
This makes the approach robust. By contrast, the criterion
of the correlation approach is calculated from the separated
signals themselves. This makes the approach precise. Our
proposed method benefits from both advantages. In our ex-
periments, the proposed method solved permutation prob-
lems almost perfectly under conditions whereby 2 sources
were mixed in a room where TR = 300 ms.
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