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ABSTRACT

This paper presents a robust and precise method for solving
the permutation problem of frequency-domain blind source
separation. It is based on two previous approaches: the di-
rection of arrival estimation approach and the inter-frequency
correlation approach. We discuss the advantages and disad-
vantages of the two approaches, and integrate them to ex-
ploit the both advantages. We also present a closed form
formulato calculate a null direction, which is used in es-
timating the directions of source signals. Experimental re-
sults show that our method solved permutation problems al-
most perfectly for a situation that two sources were mixed
in aroom whose reverberation time was 300 ms.

1. INTRODUCTION

Blind source separation (BSS) is a technique for estimat-
ing original source signals using only sensor observations,
which consist of mixtures of the original signals. If the
mixtureisinstantaneous, we can directly apply independent
component analysis (ICA) [1, 2] to separate mixed signals.
In area room environment, however, signals are mixed in
a convolutive manner with reverberations. This makes the
BSS problem difficult since we need a set of filters, not just
scalars, to separate signals. One of the mgjor methods to
obtain such separating filtersis frequency-domain BSS [3—
10], where a convol utive mixture in the time domain is con-
verted into multiple instantaneous mixtures. Thus, we can
apply | CA toinstantaneous mixturesin every frequency bin.

The problem with frequency-domain BSSisthe indeter-
minacy of permutation that is inherent to ICA. We need to
map a separated signal at each frequency to atarget source
signal so that we properly reconstruct a separated signal in
the time domain. Various approaches have been proposed
to the permutation problem. Making separating matrices
smooth in the frequency domain is one solution. This has
been redlized by averaging separating matrices with adja-
cent frequencies [3], limiting the filter length in the time
domain [4], or considering the coherency of separating ma-
trices at adjacent frequencies[5]. Another approach isbased
on direction of arrival (DOA) estimation in the beamform-
ing theory [6, 7]. If source signals are speech, we can em-
ploy the inter-frequency correlations of signal envelopesto
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aign permutations[8, 9]. Each of these approaches has dif-
ferent characteristics. They may perform well under certain
specific conditions but not others. Therefore, we believe
that integrating some of these approaches is one way of ob-
taining better performance.

In this paper, we propose a new method for solving the
permutation problem, which incorporates two of the previ-
ous approaches. The first is the DOA approach, which is
described in Sec. 3. The second is based on inter-frequency
correlations, which is discussed in Sec. 4. Our new method
is proposed in Sec. 5. The experimental results reported in
Sec. 6 are promising.

The second contribution of this paper is a closed form
formulafor calculating a null direction, whichisused in es-
timating the directions of source signals (Sec. 3). It dramat-
ically reduces the calculation cost of null directions com-
pared with the conventional method by searching for the
minimum of adirectivity pattern.

2. FREQUENCY-DOMAIN BSS

Supposethat P source signals s, (t) are mixed and observed

at Q sensors zy(t) = S0y S hp(k)s,p(t — k), where

hqp(k) represents the impulse response from source p to

sensor g. The goal of BSS is to obtain separated signals

y1(t), ..., yp(t) that are estimates of the source signals s (t),
...,sp(t). The separating system typicaly consists of a

set of FIR filters w,q(k) that produces separated signals

yr(t) = Yoy g weq(R)zg(t — ).

This paper employsafrequency-domain approach where
frequency responses W, ( f) of the separating filter w,.q (k)
arefirst calculated. By L-point short time DFT, time-domain
signalsz,(t) are converted into frequency-domain time-series
signals X,(f,m), where f = 0, fs/L, ..., fs(L—1)/L
(fs: sampling frequency), and m is the frame index. As-
sume that X(f, m) is a @Q-dimensiond vector X(f,m) =
[X1(f,m), ..., Xo(f,m)]T. Toobtainfrequency responses
Wrq(f), wesolvelCA problem Y (f, m) = W(f)X(f, m),
where Y (f,m) = [Yi(f,m),...,Yp(f,m)]T and W (f)is
aP x @ matrix whose elements are W, (f). Y, (f,m) isa
frequency-domain representation of y,.(¢).

The ICA agorithm we useis the information maximiza-
tion approach [1] combined with the natural gradient [2]. A
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Fig. 1. Directivity patterns
separating matrix W' is gradually improved by the learning

rule AW = u[I— (®(Y)YH)] W, where 11 is a step-size
parameter, (-) denotes the averaging operator, and ®(-) isa

nonlinear function for acomplex signal ;. = || e/ Phase(¥r),

We use ®(Y,) = — 37 logp(|Y;|) /M=) assuming
that the density p(Y;.) isindependent of the phase [10].

An ICA solution has an ambiguity on permutation: if
we permute the rows of W(f), itis still asolution. Thus,
we have to align the rows of W(f) sothat Y, (f,m) at al
frequencies correspond to the same source s, (t). Thisis
the permutation problem. After solving the problem, we
obtain separating filters w,., (k) by applying inverse DFT to
Wrg(f).

3. THE DIRECTION OF ARRIVAL APPROACH

In this section, we first review the method [6, 7] for solv-
ing the permutation problem by estimating the directions of
source signals. If the sensor spacing is appropriately nar-
row (e.g., conditionsin Table 1), each row of W ( f) usually
forms spatial nulls in the directions of jammer signals and
extracts a target signal in another direction [11]. By an-
alyzing the null directions, we can estimate the directions
O(f) = [0:(f),...,0p(f)]T of target signals that every
row of W(f) extracts. Then, we can align permutations
according to ©(f).

The null directions can be analyzed by plotting the di-
rectivity pattern of each output Y;.(f, m). Let d, bethe posi-
tion of sensor ¢ (we assume linearly arranged array sensors),
and ¢, be the direction of source s,, (the direction orthog-
onal to the array is 90°). In the beamforming theory [12],
the frequency response of an impulse response h,(t) isap-
proximated as H,(f) = €2/ dacosty where c is the
velocity of propagation. In this approximation, we assume
a plane wavefront and no reverberation. The frequency re-
sponse B,,,(f) from asource s, to a separated signal y,- can
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Fig. 2. Directivity pattern on a complex plane

be expressed asBTp(f) = Zqul qu(f) . ej27rfc*1dq cosfp
If we regard 6,, as a variable 6, the formulais expressed as
B,(f,0) = Y0, Wyq(f) - e727/< 7 dacosé |t changes ac-
cording to the direction #, and thus is called a directivity
pattern.

Figure 1 shows directivity patternsfor two sources. The
upper part (3156 Hz) shows that output Y; extracts a source
signal originating from around 45 ° and suppresses the other
signal coming from around 125°. With a similar considera-
tionon Y5, we estimate thedirections©(3156) = [45,125] 7
of the target signals. A simple way to solve the permutation
problem isto permute W ( f) at each frequency so that ©( f)
are sorted. However, not every frequency bin gives us such
an ideal directivity pattern. The lower part of Fig. 1 isthe
pattern at a low frequency (176 Hz). We see that anull is
not well formed for Y7 and the null of Y5 isin an obscure
direction. In fact, we cannot estimate ©(176) or decide a
permutation for this frequency with confidence.

Now we state two problems with this method: 1) direc-
tions of arrival cannot be well estimated at some frequen-
cies, especialy at low frequencies where the phase differ-
ence caused by a sensor spacing is very small, 2) the cal-
culation of null directions by plotting directivity patternsis
time consuming. The first problem will be solved in Sec. 5.

For the second problem, here we provide a closed form
formula for calculating a null direction (only for two sen-
sors). The directivity pattern B,.(f, §) can be simplified as
B (f,0) = Wi (f) + Wya(f) - e127f¢ deost if we assume
dy =0 and dy = d. As cos# changes from 1 to —1 inac-
cordance with the change of direction 6, the frequency re-
sponse B,.(f,0) rotates around a circle whose center and
radius are W,.; and W,.5, respectively (Fig. 2). We see that
spatial aliasingdoes not occur if 27 fetd < & f<c/(2d).
When the distance from the origin is minimized, the plot
corresponds to the null direction 6,,,,;;. The situation is one
where W, rotated by 727/ dcosbuu points to the oppo-
site direction of W,.1: angle(W,2) + 2nfctdcos Opuny =
angle(W,1) &+ m. Therefore,

_1 angle(Wy1) — angle(Wy2) £ 7

2w feld
Thesign of £ is selected so that the numerator isinthe —r
to 7 range. There are some cases where the absolute value
of the argument of cos ! islarger than 1. This corresponds
to a situation wherethereisnonull in0° < 8 < 180°.

001 = COS
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Fig. 3. Envelopes at different frequencies

4. THE CORRELATION APPROACH

This section discusses an approach to permutation align-
ment based on inter-frequency correlation [5, 8, 9]. Wetake
the envelope vf (m) = |Y,.(f,m)| of a separated signal
Y,.(f, m) to measure correlations. Let us define the correla-
tion of two signalsz(m) and y(m) ascor(z,y) = [(z - y) —
(x)- )]/ (04 0y), where (-) isan averaging operator and o
isastandard deviation. Based on thisdefinition, cor(z, x) =
1, and cor(x, y) = 0 if = and y are uncorrelated. Envelopes
have high correlations at neighboring frequencies if sepa-
rated signals correspond to the same source signal [8, 9].
Figure 3 shows an example. Two envelopes v1°%2 and v$566,
aswell as v3%5% and v156¢, are highly correlated. Thus, cal-
culating such correlations helps us to align permutations.

Henceforth let = denote a permutation: {1,..., P} —
{1,..., P}. A simple criterion to decide a permutation 7 ¢
of frequency f isto maximize the sum of correlations be-
tween neighboring frequencies within distance D:

Tp=aAgMaX, Yy s pdo,Cor(ul vk ), (@)
where 7, isthe permutation at frequency k. Thiscriterionis
based onlocal information and has adrawback that mistakes
in a narrow range of frequencies may lead to the complete
misalignment of the frequencies beyond that point. To avoid
this problem, the method propased in [9] does not limit the
frequency range in which correlations are calculated. It de-
cides permutations one by one based on the criterion:

mp = argmax, 35 cor(vl ), Sk ), (@)
where F' is a set of frequencies in which the permutation
is decided. This method assumes high correlations of en-
velopes even between frequencies that are not close neigh-
bors, athough thisis not alwaysthe case. As shown in Fig.
3, v}°% and 2516 do not have a high correlation. There-
fore, this method still has a drawback in that permutations
may be misaligned at many frequencies.

KW(W)GUﬁJmMﬂWUD h

me = (O(f)); [I* averaged directions*/
F =0 [*theset of fixed frequencies*/
[* Fix permutations by the DOA approach */
for (Y1) {
if (confident(O(f), mo, W(f))) {
75 = getPermutation(O(f))
F=FuU{f}

}

[* Fix permutations by the correlation approach */
while (?f¢ F) {
for (Yf¢F) {
Cf=maX, Z\k—ﬂgD,keF Zp cor(vf(p), v:k(p))
= argmaxﬂ'z:\k—f|§D,kEFchor(U7{(p)’ ”:k (p))
}
i = argmax cy
F=FuU{i}
C; = 0
}
N %

Fig. 4. Pseudo-code for the integrated method

5. A ROBUST INTEGRATED APPROACH

In this section, we propose a robust and precise approach
which integrates the two approaches discussed above. We
consider their characteristics below.

robustness The direction of arrival (DOA) approach is ro-
bust since a misalignment at a frequency does not af-
fect other frequencies. The correlation approach is
not robust as discussed in Sec. 4.

preciseness The DOA approachisnot precise sincethe eval-
uation is based on the approximation of a mixing sys-
tem as explained in Sec. 3. The correlation approach
isprecise aslong as signalsare well separated by |CA
since the measurement is based on separated signals.

Our approach benefits from both advantages:. the robust-
ness of the DOA approach and the preciseness of the corre-
|ation approach. Figure 4 shows the pseudo-code.

We first fix permutations at some frequencies where the
confidence of the DOA approach is sufficiently high. The
procedure confident decides whether the confidence ishigh
enough. Our criteriafor the decision are: 1) the number of
estimated directions is the same as the number of sources,
2) the directions ©(f) do not largely differ from the aver-
aged directionsmg, 3) the SNR cal cul ated by the frequency
responses B,.(f, 0,) for each directionis sufficiently large.

Then, we decide the permutations for the remaining fre-
guencies by the correlation method without changing the
permutations fixed by the DOA approach. The permuta-
tions are decided in order of the sum of correlations with
fixed frequencies k € F within distance [k — f| < D.
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Table 1. Experimental conditions

Length of source signal 6 sec

Direction of sources 50° and 120° (2 sources)
Distance between 2 sensors | d =4cm

Reverberation time Tr =300ms

Sampling rate fs =8kHz

Fregquency resolution L =2048

Nonlinear function B(Y;) = ef Phase(¥r)
Distanceto takecorrelation | D =3 - f5/L

This approach does not result in a large misalignment
as long as the permutations fixed by the DOA approach are
correct. Moreover, the correlation part compensates for the
lack of preciseness of the DOA approach.

6. EXPERIMENTAL RESULTS

We performed experiments to separate speech signalsin a
reverberant environment whose conditions are summarized
in Table 1. We generated mixed signals by convolving a
speech signal s, (¢) and an impulse response h,,,(t) so that
we can calculate SNRs (signal-to-noise ratios) by
10 log[Z'r:p 2t Yrp (t)?] - 10 log[Z'r;ﬁp >t Yrp ()%,

where y,(t) = 222:1 2ok Wrp(K)Tgp(t — k) and 24, (1) =
>k hap(k)sp(t — k). We separated 12 combinations of
speech signals with 4 different methods for comparison:
the DOA approach, the correlation approach based on (1),
the correlation approach based on (2), and our proposed
method. Figure 5 shows the results, where “ave” shows the
average result of 12 combinations for each method.

The performance with “DOA” is stable, but not suffi-
cient. Theresultswith“Cor (1)" and “Cor (2)” are not stable
and sometimes very poor, although most of thetimethey are
very good. The “Integrated” method offers stable and very
good results. The percentages of the permutations fixed by
the DOA approach with confidence were around 45%. We
additionally obtained optimal permutations by maximizing
the SNR at each frequency. Although thisis not a redlistic
solution, we can estimate the upper bounds of performance.
The average of “Optimal” was 16.8 dB. Since the average
performance with “Integrated” was 16.3 dB, we consider
that the integrated method performed very well.

7. CONCLUSIONS

We proposed a robust and precise method for solving per-
mutation problem. It integrates two previous approaches:
the DOA approach and the correlation approach. The cri-
terion of the DOA approach is directionswhich is absolute.
This makes the approach robust. By contrast, the criterion
of the correlation approach is calculated from the separated
signals themselves. This makes the approach precise. Our
proposed method benefits from both advantages. In our ex-
periments, the proposed method solved permutation prob-
lems almost perfectly under conditions whereby 2 sources
were mixed in aroom where Tr = 300 ms.
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