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Abstract—Blind source separation (BSS) for convolutive mix-
tures can be solved efficiently in the frequency domain, where in-
dependent component analysis (ICA) is performed separately in
each frequency bin. However, frequency-domain BSS involves a
permutation problem: the permutation ambiguity of ICA in each
frequency bin should be aligned so that a separated signal in the
time-domain contains frequency components of the same source
signal. This paper presents a robust and precise method for solving
the permutation problem. It is based on two approaches: direction
of arrival (DOA) estimation for sources and the interfrequency cor-
relation of signal envelopes. We discuss the advantages and disad-
vantages of the two approaches, and integrate them to exploit their
respective advantages. Furthermore, by utilizing the harmonics of
signals, we make the new method robust even for low frequen-
cies where DOA estimation is inaccurate. We also present a new
closed-form formula for estimating DOAs from a separation ma-
trix obtained by ICA. Experimental results show that our method
provided an almost perfect solution to the permutation problem
for a case where two sources were mixed in a room whose rever-
beration time was 300 ms.

Index Terms—Blind source separation (BSS), convolutive mix-
ture, direction of arrival (DOA) estimation, frequency domain, in-
dependent component analysis (ICA), permutation problem, signal
envelope.

I. INTRODUCTION

B LIND SOURCE separation (BSS) [1] is a technique for
estimating original source signals from their mixtures at

sensors. Independent component analysis (ICA) [2], [3] is one
of the major statistical tools used for solving this problem. If
signals are mixed instantaneously, we can directly employ an
instantaneous ICA algorithm to separate the mixed signals. In a
real room environment, however, signals are mixed in a convo-
lutive manner with reverberations. This makes the BSS problem
difficult since we need a matrix of FIR filters, not just a matrix of
scalars, to separate convolutively mixed signals. We need thou-
sands of filter taps to separate acoustic signals mixed in a room.
Many methods have been proposed to solve the convolutive BSS
problem, and they can be classified into two approaches based
on how we apply ICA.
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The first approach is time-domain BSS, where ICA is applied
directly to the convolutive mixture model [4]–[7]. The approach
achieves good separation once the algorithm converges, since
the ICA algorithm correctly evaluates the independence of sep-
arated signals. However, ICA for convolutive mixtures is not as
simple as ICA for instantaneous mixtures, and computationally
expensive for long FIR filters because it includes convolution
operations.

The other approach is frequency-domain BSS, where com-
plex-valued ICA for instantaneous mixtures is applied in each
frequency bin [8]–[17]. The merit of this approach is that the
ICA algorithm becomes simple and can be performed separately
at each frequency. Also, any complex-valued instantaneous ICA
algorithm can be employed with this approach. However, the
permutation ambiguity of the ICA solution becomes a serious
problem. We need to align the permutation in each frequency
bin so that a separated signal in the time domain contains fre-
quency components from the same source signal. This problem
is well known as the permutation problem of frequency-domain
BSS.

Some methods have been proposed where filter coefficients
are updated in the frequency domain but nonlinear functions
for evaluating independence are applied in the time domain
[18]–[20]. There is also a frequency-domain implementation of
time-domain BSS where time-domain convolution is speeded
up by the overlap-save method [21], [22]. In either case, the
permutation problem does not occur since the independence of
separated signals is evaluated in the time domain. However, the
algorithm moves back and forth between the two domains in
every iteration, spending nonnegligible time for discrete Fourier
transform (DFT) and inverse DFT. Therefore, we consider that
the permutation problem is essential if we want to benefit from
the merit of frequency-domain BSS mentioned above.

Various methods have been proposed for solving the permu-
tation problem. Making separation matrices smooth in the fre-
quency domain is one solution. This has been realized by av-
eraging separation matrices with adjacent frequencies [8], lim-
iting the filter length in the time domain [8], [16], [17], [22],
or considering the coherency of separation matrices at adjacent
frequencies [14]. Another approach is based on direction of ar-
rival (DOA) estimation in array signal processing. By analyzing
the directivity patterns formed by a separation matrix, source
directions can be estimated and therefore, permutations can be
aligned [9], [10]. If the sources are audio signals such as speech,
we can employ the interfrequency correlations of output signal

1063-6676/04$20.00 © 2004 IEEE



SAWADA et al.: ROBUST AND PRECISE METHOD FOR SOLVING THE PERMUTATION 531

Fig. 1. BSS for convolutive mixtures.

envelopes to align the permutations [12], [13]. Each of these
approaches has different characteristics, and may perform well
under certain specific conditions but not others.

We consider that integrating some of these approaches is one
way of obtaining better performance. In this paper, we pro-
pose a new method for solving the permutation problem ro-
bustly and precisely by integrating two of the approaches out-
lined above. The first is the DOA approach, which is discussed
in Section III-A, as this will provide the new method with ro-
bustness. The second is based on interfrequency correlations of
output signal envelopes, which is discussed in Section III-B, and
will make the new method precise. The proposed method is de-
scribed in Section IV. Experimental results are reported in Sec-
tion V and are very promising.

As another contribution, we propose a method of estimating
the direction of sources analytically in Section IV-C. Unlike
conventional methods [9], [10], this method does not require the
calculation of directivity patterns. Instead, it calculates the di-
rections of target signals directly from an estimated mixing ma-
trix, which is basically the inverse of a frequency-domain sep-
aration matrix obtained by ICA. This method can estimate the
directions of more than two sources, thus enabling us to separate
more than two sources practically by frequency-domain BSS.

II. BSS FOR CONVOLUTIVE MIXTURES

A. Problem Formulation

Fig. 1 shows the block diagram of BSS. Suppose that
source signals are mixed and observed at sensors

(1)

where represents the impulse response from source to
sensor . We assume that the number of sources is known or
can be estimated in some way, and the number of sensors
is more than or equal to . The goal is to separate
the mixtures and to obtain a filtered version of a source

at each output

(2)

where is a filter and is a
permutation. The separation system typically consists of a set of
FIR filters of length to produce separated signals

(3)

Fig. 2. Flow of frequency-domain BSS.

The filter and the permutation in (2) represents the
scaling and the permutation ambiguity of BSS, respectively. We
assume that the permutation ambiguity is decided based on the
directions of sources estimated by the method discussed in this
paper. Thus, let be identity mapping to have a source at
output for simplicity. As for the scaling ambiguity, it is desir-
able to obtain just a delayed version, not a filtered version (2), of

at the output . However, it is very difficult to achieve
this with the ICA scheme unless is white, which is not the
case for separating natural sounds such as speech [7]. Hence,
we allow a filter

(4)

following the minimal distortion principle (MDP) [6].
The separation system can be analyzed by using the impulse

responses from a source to a separated signal

(5)

The separation performance is evaluated by using a signal-to-in-
terference ratio (SIR). It is calculated as the ratio of the power
of a target component and interference com-
ponents .

B. Frequency-Domain BSS

We employ frequency-domain BSS where ICA is applied
separately in each frequency bin to obtain the frequency re-
sponses of separation filters [8]–[15]. Fig. 2
shows the flow. First, time-domain signals are converted
into frequency-domain time-series signals with an

-point short-time Fourier transform (STFT)

where is one of frequencies ,
( : the sampling frequency), is a window that

tapers smoothly to zero at each end, such as a Hanning window
, and is now down-sampled with the

distance of the window shift.
Then, to obtain the frequency responses of filters

, complex-valued ICA

(7)

is solved, where ,
, and is an



532 IEEE TRANSACTIONS ON SPEECH AND AUDIO PROCESSING, VOL. 12, NO. 5, SEPTEMBER 2004

separation matrix whose elements are . If we have more
sensors than sources , principal component analysis
(PCA) is typically performed as a preprocessing of ICA [23] so
that the dimensional subspace spanned by the row vectors of

is almost identical to the signal subspace.
One of the advantages of frequency-domain BSS is that we

can employ any ICA algorithm for instantaneous mixtures, such
as the information maximization approach [24] combined with
the natural gradient [25], FastICA [26], JADE [27], or an algo-
rithm based on the nonstationarity of signals [28]. We use the
information maximization approach combined with the natural
gradient in this paper. The separation matrix is improved by
the learning rule

(8)

where is a step-size parameter, denotes the averaging op-
erator over time, and is an element-wise nonlinear function
for a complex signal . We use

as a nonlinear function assuming that the density is in-
dependent of the argument of [15]. Note that the subspace
identified by the PCA for an case is not changed by the
update (8).

The ICA solution in each frequency bin has permutation and
scaling ambiguity: even if we permute the rows of or
multiply a row by a constant, it is still an ICA solution. In ma-
trix notation, is also an ICA solution for any
permutation and diagonal matrix. The permutation
matrix should be decided so that at all frequencies
correspond to the same source by the update of the mixing
matrix

(10)

This is the permutation problem, which is the main topic of this
paper. The scaling ambiguity can be decided so that the MDP
[6] is realized in the frequency-domain [13]. Let be the
unknown mixing matrix. Considering (4), the diagonal matrix

should satisfy

(11)

Although is unknown, there is another diagonal matrix
that satisfies if ICA is success-

fully solved. Thus, can be estimated up to scaling by
. By substituting this estimation with

(11), we have . The scaling ambiguity
is therefore, decided by

(12)

If , the Moore-Penrose pseudoinverse is used
instead of (see Appendix A). Finally, separation filters

are obtained by applying inverse DFT to .

III. TWO EXISTING APPROACHES

This section discusses the two approaches that are integrated
into our new method for solving the permutation problem.

Fig. 3. Directivity patterns for two sources.

A. Direction of Arrival (DOA) Approach

We first discuss the DOA approach where the directions of
source signals are estimated and permutations are aligned based
on them. If half the wavelength of a frequency is longer than
the sensor spacing, there is no spatial aliasing. In most such
cases, each row of forms spatial nulls in the directions
of jammer signals and extracts a target signal in another di-
rection [11]. Once we have estimated the directions

of target signals extracted by every row of
, we can obtain a permutation matrix by sorting or

clustering .
Now, we review the method [9], [10] that estimates the direc-

tions of sources and aligns permutations by plotting the direc-
tivity pattern of each output . Let be the position of
sensor (we assume linearly arranged array sensors), and be
the direction of source (the direction orthogonal to the array
is 90 ). In beamforming theory [29], the frequency response of
an impulse response is approximated as

k (13)

where is the propagation velocity. In this approximation,
we assume a plane wavefront and no reverberation. The fre-
quency response of (5) can be expressed as

k .
If we regard as a variable , the formula is expressed as the
following:

(14)

This formula changes according to the direction , and is thus
called a directivity pattern.

Fig. 3 shows the gain of directivity patterns for two
sources mixed under the conditions shown in Table I. The upper
part (3156 Hz) shows that output extracts a source signal
originating from around 45 and suppresses the other signal
coming from around 125 , which is called a null direction. A
null direction is obtained by searching a directivity pattern for
the minimum. With a similar consideration regarding , we
estimate the directions of the target
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Fig. 4. Envelopes of two output signals at different frequencies.

signals. Even if the approximation (13) was used for the rever-
berant condition, the estimation was good enough to decide the
permutation. However, not every frequency bin gives us such an
ideal directivity pattern. The lower part of Fig. 3 is the pattern
at a low frequency (176 Hz). We see that the null is not well
formed for and the null of is in an obscure direction. In
fact, we cannot estimate or decide a permutation for this
frequency with confidence.

There are three problems with this method:

1) directions of arrival cannot be well estimated at some fre-
quencies, especially at low frequencies where the phase
difference caused by the sensor spacing is very small,
and also at high frequencies where spatial aliasing might
occur;

2) calculation of null directions by plotting directivity pat-
terns is time consuming;

3) estimating DOAs from null directions is difficult when
there are more than two sources.

The first problem reveals the limitation of the DOA approach,
and will be solved in Sections IV-A and IV-B. The other two
problems are caused by using directivity patterns, and will be
solved in Section IV-C.

B. Correlation Approach

We discuss an approach to permutation alignment based on
interfrequency correlations of signals [12], [13]. We use the en-
velope

(15)

of a separated signal to measure the correlations. We
define the correlation of two signals and as

(16)

where is the mean and is the standard deviation of .
Based on this definition, , and if

and are uncorrelated. Envelopes have high correlations at
neighboring frequencies if separated signals correspond to the
same source signal. Fig. 4 shows an example. Two envelopes

and , as well as and , are highly corre-
lated. Thus, calculating such correlations helps us to align per-
mutations.

Let be a permutation corresponding to the inverse
of the permutation matrix of (10). A simple criterion for de-
ciding is to maximize the sum of the correlations between
neighboring frequencies within distance

(17)

where is the permutation at frequency . This criterion is
based on local information and has a drawback in that mistakes
in a narrow range of frequencies may lead to the complete mis-
alignment of the frequencies beyond the range. To avoid this
problem, the method in [13] does not limit the frequency range
in which correlations are calculated. It decides permutations one
by one based on the criterion

(18)

where is a set of frequencies in which the permutation is de-
cided. This method assumes high correlations of envelopes even
between frequencies that are not close neighbors. This assump-
tion is not satisfied for all pairs of frequencies, although a high
correlation can be assumed for a fundamental frequency and its
harmonics. As shown in Fig. 4, and do not have a
high correlation. Therefore, this method still has a drawback in
that permutations may be misaligned at many frequencies.

IV. NEW ROBUST AND PRECISE METHOD

This section presents our new method that integrates the two
approaches discussed above to solve the permutation problem
robustly and precisely.

A. Basic Idea of the Method

We begin by reviewing the characteristics of the two existing
approaches.

• Robustness: The DOA approach is robust since a mis-
alignment at a frequency does not affect other frequen-
cies. The correlation approach is not robust since a mis-
alignment at a frequency may cause consecutive misalign-
ments.

• Preciseness: The DOA approach is not precise since
the evaluation is based on an approximation of a mixing
system. The correlation approach is precise as long as
signals are well separated by ICA since the measurement
is based on separated signals.

To benefit from both advantages, namely the robustness of the
DOA approach and the preciseness of the correlation approach,
our method basically solves the permutation problem in the two
following steps:

1) fix the permutations at some frequencies where the confi-
dence of the DOA approach is sufficiently high;

2) decide the permutations for the remaining frequencies
based on neighboring correlations (17) without changing
the permutations fixed by the DOA approach.
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Fig. 5. Pseudo-code for the first version of the proposed method.

Fig. 5 shows the pseudo-code. A set contains frequencies
where the permutation is decided. The key point in the first DOA
approach is that we fix a permutation only if the confidence
of the permutation is sufficiently high. The procedure confident
decides whether the confidence is high enough. Our criteria for
the decision are the following:

1) number of estimated directions is the same as the number
of sources;

2) directions do not differ greatly from the averaged
directions , i.e. is smaller than a threshold

;
3) SIR calculated by using (14) is sufficiently large, i.e.

is larger than a threshold .

In the second step, permutations are decided one by one for the
frequencies where the permutation is not fixed. The measure-
ment for deciding permutations is given by the sum of correla-
tions with fixed frequencies within distance .

This method does not cause a large misalignment as long as
the permutations fixed by the DOA approach are correct. More-
over, the correlation part compensates for the lack of preciseness
of the DOA approach.

B. Exploiting the Harmonic Structure of Signals

The method proposed above works very well in many cases.
However, there is a case where the DOA approach does not pro-
vide any fixed permutation with confidence in a certain range of
frequencies. This occurs particularly at low frequencies where it
is hard to estimate DOAs as discussed in Section III-A. In such
a case, the proposed method has to align permutations for the
range solely through the use of neighboring correlations, and
may yield consecutive misalignments.

To cope with this problem, we exploit the harmonic structure
of a signal. As alluded to in Section III-B, there are strong cor-
relations between the envelopes of a fundamental frequency

Fig. 6. Pseudo-code for the harmonic part of the proposed method.

and its harmonics , , and so forth. Suppose that the permu-
tation is not fixed at frequency but fixed at its harmonics. If
the correlation

f

(19)

is larger than a threshold , we fix the permutation at fre-
quency with confidence. Fig. 6 shows the pseudo-code for the
harmonic part. The procedure provides
a set of harmonic frequencies of .

To incorporate the above idea, the final version of our method
fixes all permutations with four steps:

Step 1) by the DOA approach (the upper part of Fig. 5);
Step 2) by neighboring correlations (the lower part of

Fig. 5) with the exception that the while loop
terminates if the maximum is smaller than a
threshold ;

Step 3) by the harmonic method (Fig. 6);
Step 4) by neighboring correlations (the lower part of

Fig. 5) again without the exception.
There are two important points as regards the final version. The
first is that the method becomes more robust because of the ex-
ception in Step 2. We do not fix the permutations for consec-
utive frequencies without high confidence. The second point is
that Step 3 works well only if most of the other permutations
are fixed. This means that the harmonic method alone does not
work well and we need Steps 1 and 2 to fix most of the permu-
tations.

C. Closed-Form Formula for Estimating DOAs

The DOA estimation method reviewed in Section III-A has
two problems, a high computational cost and the difficulty of
using it for mixtures of more than two sources. Instead of plot-
ting directivity patterns and searching for the minimum as a null
direction, we propose a new method of estimating the directions

of source signals. In principle, this method can be applied
to any number of source signals.

It starts by estimating the frequency response of the
mixing system from a separation matrix obtained by
ICA. If the ICA is successfully solved, there are a permu-
tation matrix and a diagonal matrix that satisfy

. Thus, can be estimated by
up to permutation and scaling ambigui-

ties: the columns can be permuted arbitrarily and have
arbitrary scales compared with the real frequency response.
Again, if , the Moore–Penrose pseudoinverse is
used instead of (see Appendix A). It should be noted
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TABLE I
EXPERIMENTAL CONDITIONS

that the scaling ambiguity is canceled out by calculating the
ratio between two elements and of the same
column of

(20)

where is the permutation corresponding to postmultiplying
.

An element of the matrix obtained in the above
manner may have an arbitrary amplitude. Since the approxima-
tion (13) of the mixing system does not suit this situation, we
remodel the mixing system with attenuation (real-valued)
and phase modulation at the origin:

(21)

From (20) and (21), we have

(22)

Then, taking the argument yields a formula for estimating

(23)

If the absolute value of the input variable of arccos is larger
than 1, becomes complex and no direction is obtained. In this
case, formula (23) can be tested with another pair and . By
calculating for all , we can obtain the directions
of all source signals whatever permutation may be.

The new method offers an advantage in terms of computa-
tional cost. Estimated directions are provided by the closed-
form formula (23), whereas the minima of should be
searched for with the previous method using directivity patterns
(14). For a two-source case, we prove that calculated by the
above formula is the same as a null direction that is the min-
imum of directivity patterns (see Appendix B).

V. EXPERIMENTAL RESULTS

We performed experiments to separate speech signals in a
reverberant environment whose conditions are summarized in
Table I. The sensor spacing was selected so that there was no

Fig. 7. Separation results for 12 pairs of speech signals with six different
methods for the permutation problem: the DOA approach “ ,” the correlation
approach “ ” based on (18), the correlation approach “ ” based on (17), the
first version “ ” of the proposed method, the final version “ ” of the
proposed method, and the permutations maximizing the SIR at each frequency
“ ” (see Appendix C). Although “ ” is not a realistic solution, it
gives a rough estimate of the upper bound of performance.

TABLE II
COMPUTATIONAL TIME (S)

spatial aliasing for any frequency. We generated mixed signals
by convolving speech signals and impulse responses

so that we could calculate SIRs defined in Section II-A.
Fig. 7 shows the overall separation results in terms of SIR. We
separated 12 pairs of speech signals with six different methods
for the permutation problem, as explained in the caption.
Table II shows the computational time for STFT, ICA and each
of the six different methods used for permutation alignment.
They are for source signals of 6 s, and averaged over the 12
pairs. The BSS program was coded in Matlab and run on Athlon
XP 3200+.

The performance with “ ” is stable, but not sufficient. The
results with “ ” and “ ” are not stable and sometimes very
poor, although most of the time they are very good. Both pro-
posed methods “ ” and “ ” offer good stable
results. In particular, the method exploiting the harmonic struc-
ture “ ” offers almost the same results as “ .”
As regards computational time, method “ ,” where DOA is cal-
culated by (23) instead of plotting directivity patterns, is very
fast. The other methods, including both proposed methods, can
be performed in a feasible computational time.

Now we examine the effectiveness of the proposed methods
by looking at the ninth pair of speech signals in detail. Fig. 8
shows the SIRs at each frequency for “ ,” “ ” and
“ .” We see a large region (from 450 to 1400
Hz) of permutation misalignments for the “ ” case, where
permutations were decided only with neighboring correlations.
Fig. 9 shows the difference between the correlation sums

for different permutations. We see
that the difference is very small around 1400 Hz, and the
criterion based on (17) does not provide a clear-cut decision.
Therefore, the risk of the permutations being misaligned is very
high around 1400 Hz only with (17) in this case.
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Fig. 8. SIRs measured at frequencies. The permutation problems were solved
by three different methods, the correlation approach “ ,” the first version
“ ” of the proposed method, and the final version “ .”

Fig. 9. Differences between the correlation sums of two possible permutations,
[cor(v ; v )+cor(v ; v )]� [cor(v ; v )+cor(v ; v )], with neighboring
frequencies g = f + 1�f , f + 2�f , f + 3�f .

Fig. 10. DOA estimations with confidence.

With the “ ” method, the misalignments of the region
(from 450 to 1400 Hz) were corrected. This is because the DOA
approach provided correct permutations for some frequencies
in the region. Fig. 10 shows the DOA estimations for each fre-
quency with confidence. We see many estimations from 450 to
1400 Hz. However, there was no DOA estimation with confi-
dence at frequencies lower than 250 Hz. This is why consecu-
tive misalignments occurred even for “ .” As shown at
the bottom of Fig. 8, the misalignments were corrected with the
“ ” method. This shows the effectiveness of ex-
ploiting the harmonic structure for low frequencies.

Although the results shown here are only for two sources, the
method can also be applied for more than two sources. In [30],
the separation performance for four sources was compared. The
results corresponding to “ ” were satisfactory and
superior to the others. In [31], six sources were separated with a
planar array of eight sensors. Again, the separation performance
is superior when both the DOA approach and the correlation
approach were used.

VI. CONCLUSION

We have proposed a robust and precise method for solving
the permutation problem. Our method effectively integrates two
approaches: the DOA approach and the correlation approach.
The criterion of the DOA approach is based on directions that
are absolute. This makes the approach robust. By contrast,
the criterion of the correlation approach is calculated from the
separated signals themselves. This makes the approach precise.
Our proposed method benefits from both advantages. In the ex-
periments, the proposed method solved permutation problems
almost perfectly under the conditions shown in Table I. The
method even performs well for more than two sources [30],
[31]. We consider that the proposed method has expanded the
applicability of frequency-domain BSS.

APPENDIX A
ESTIMATING THE MIXING MATRIX FOR AN CASE

As discussed in Section II-B and IV-C, estimating the mixing
matrix up to scaling and permutation by the inverse
is very useful in frequency-domain BSS. When the number of
sensors is larger than the number of sources ,
the Moore–Penrose pseudoinverse is used instead of

. This appendix discusses the condition where this opera-
tion gives a proper estimation of the mixing matrix.

If ICA is solved, there is a permutation matrix and a di-
agonal matrix that satisfy . If ,
is uniquely given by . However, if

, there are an infinite number of solutions for
. Among them, the solution re-

alized by the Moore-Penrose pseudoinverse has a special prop-
erty: the subspace spanned by the column vectors of
is identical to the subspace spanned by the row vec-
tors of [32]. Therefore, if the subspace is properly
selected, can be used as an estimation of the mixing matrix up
to scaling and permutation. Otherwise, does not give a good
estimation, and the frequency-domain version of MDP (12) and
the DOA estimation (23) may fail. It is safe to employ PCA to
decide the subspace as described in Section II-B, since
it is almost identical to the subspace spanned by the column
vectors of the mixing matrix.

APPENDIX B
EQUIVALENCE BETWEEN AND A NULL DIRECTION

For a two-source case, we prove that calculated by (23) is
the same as a null direction that is the minimum of a directivity
pattern (14). When is minimized, corresponds to a
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null direction. Let and be omitted in (14).
The value to be minimized is

(24)

Let . The first and second derivatives are

(25)

(26)

where Re and Im extract the real and imaginary part of a com-
plex, respectively. If , is zero
and is positive, and is minimized. Thus, the null
direction formed by the -th row of is given by

(27)

Considering and
, we see that and are the same:

(28)

The derivation of is based on derivatives. We have another
derivation of based on the graphical interpretation of a
directivity pattern [33].

APPENDIX C
CALCULATION OF

If we know the individual observations

(29)

of source signals at sensors , a good permutation can
be calculated by maximizing the SIR in each frequency bin. We
first apply STFT to in the same manner as (6):

(30)

Let be a matrix whose elements are , and
be a permutation matrix that permutes the rows of the right hand
matrix according to a permutation . Then, the permutation at
frequency is obtained by

(31)

where calculates the power of each element, and
returns the sum of the diagonal elements of a matrix.

ACKNOWLEDGMENT

The authors wish to thank H. Saruwatari, for his valuable dis-
cussions and for providing the impulse responses used in the
experiments, T. Nakatani, for valuable discussions on the har-
monic structure of speech, S. Katagiri, for continuous encour-
agement, and the anonymous reviewers who helped to improve
the quality of this paper.

REFERENCES

[1] S. Haykin, Ed., Unsupervised Adaptive Filtering (Volume I: Blind
Source Separation). New York: Wiley, 2000.

[2] T. W. Lee, Independent Component Analysis—Theory and Applica-
tions. Norwell, MA: Kluwer, 1998.

[3] A. Hyvärinen, J. Karhunen, and E. Oja, Independent Component Anal-
ysis. New York: Wiley, 2001.

[4] S. Amari, S. C. Douglas, A. Cichocki, and H. H. Yang, “Multichannel
blind deconvolution and equalization using the natural gradient,” in
Proc. IEEE Workshop Signal Processing Advances Wireless Commu-
nications, Apr. 1997, pp. 101–104.

[5] M. Kawamoto, K. Matsuoka, and N. Ohnishi, “A method of blind sepa-
ration for convolved nonstationary signals,” Neurocomput., vol. 22, pp.
157–171, 1998.

[6] K. Matsuoka and S. Nakashima, “Minimal distortion principle for blind
source separation,” in Proc. ICA, Dec. 2001, pp. 722–727.

[7] S. C. Douglas and X. Sun, “Convolutive blind separation of speech mix-
tures using the natural gradient,” Speech Commun., vol. 39, pp. 65–78,
2003.

[8] P. Smaragdis, “Blind separation of convolved mixtures in the frequency
domain,” Neurocomput., vol. 22, pp. 21–34, 1998.

[9] S. Kurita, H. Saruwatari, S. Kajita, K. Takeda, and F. Itakura, “Evalu-
ation of blind signal separation method using directivity pattern under
reverberant conditions,” in Proc. ICASSP, June 2000, pp. 3140–3143.

[10] M. Z. Ikram and D. R. Morgan, “A beamforming approach to permuta-
tion alignment for multichannel frequency-domain blind speech separa-
tion,” in Proc. ICASSP, May 2002, pp. 881–884.

[11] S. Araki, S. Makino, Y. Hinamoto, R. Mukai, T. Nishikawa, and H.
Saruwatari, “Equivalence between frequency domain blind source sep-
aration and frequency domain adaptive beamforming for convolutive
mixtures,” EURASIP J. Appl. Signal Process., no. 11, pp. 1157–1166,
2003.

[12] J. Anemüller and B. Kollmeier, “Amplitude modulation decorrelation
for convolutive blind source separation,” in Proc. ICA, June 2000, pp.
215–220.

[13] N. Murata, S. Ikeda, and A. Ziehe, “An approach to blind source sepa-
ration based on temporal structure of speech signals,” Neurocomputing,
vol. 41, no. 1–4, pp. 1–24, Oct. 2001.

[14] F. Asano, S. Ikeda, M. Ogawa, H. Asoh, and N. Kitawaki, “A combined
approach of array processing and independent component analysis for
blind separation of acoustic signals,” in Proc. ICASSP, May 2001, pp.
2729–2732.

[15] H. Sawada, R. Mukai, S. Araki, and S. Makino, “Polar coordinate based
nonlinear function for frequency domain blind source separation,”
IEICE Trans. Fund., vol. E86-A, no. 3, pp. 590–596, Mar. 2003.

[16] L. Parra and C. Spence, “Convolutive blind separation of nonstationary
sources,” IEEE Trans. Speech Audio Processing, vol. 8, pp. 320–327,
May 2000.

[17] L. Schobben and W. Sommen, “A frequency domain blind signal sepa-
ration method based on decorrelation,” IEEE Trans. Signal Processing,
vol. 50, pp. 1855–1865, Aug. 2002.

[18] A. D. Back and A. C. Tsoi, “Blind deconvolution of signals using a
complex recurrent network,” Proc. Neural Networks Signal Processing,
pp. 565–574, 1994.

[19] R. H. Lambert and A. J. Bell, “Blind separation of multiple speakers in
a multipath environment,” in Proc. ICASSP, Apr. 1997, pp. 423–426.

[20] T. W. Lee, A. J. Bell, and R. Orglmeister, “Blind source separation of
real world signals,” in Proc. ICNN, June 1997, pp. 2129–2135.



538 IEEE TRANSACTIONS ON SPEECH AND AUDIO PROCESSING, VOL. 12, NO. 5, SEPTEMBER 2004

[21] M. Joho and P. Schniter, “Frequency domain realization of a multi-
channel blind deconvolution algorithm based on the natural gradient,”
in Proc. ICA, Apr. 2003, pp. 543–548.

[22] H. Buchner, R. Aichner, and W. Kellermann, “A generalization of a class
of blind source separation algorithms for convolutive mixtures,” in Proc.
ICA, Apr. 2003, pp. 945–950.

[23] S. Winter, H. Sawada, and S. Makino, “Geometrical understanding of
the PCA subspace method for overdetermined blind source separation,”
in Proc. ICASSP, Apr. 2003, pp. 769–772.

[24] A. Bell and T. Sejnowski, “An information-maximization approach to
blind separation and blind deconvolution,” Neural Comput., vol. 7, no.
6, pp. 1129–1159, 1995.

[25] S. Amari, “Natural gradient works efficiently in learning,” Neural
Comput., vol. 10, no. 2, pp. 251–276, 1998.

[26] A. Hyvärinen, “Fast and robust fixed-point algorithm for independent
component analysis,” IEEE Trans. Neural Networks, vol. 10, pp.
626–634, May 1999.

[27] J. F. Cardoso and A. Souloumiac, “Blind beamforming for nongaussian
signals,” Proc. Instit. Elec. Eng.-F, pp. 362–370, Dec. 1993.

[28] K. Matsuoka, M. Ohya, and M. Kawamoto, “A neural net for blind sep-
aration of nonstationary signals,” Neural Networks, vol. 8, no. 3, pp.
411–419, 1995.

[29] B. D. Van Veen and K. M. Buckley, “Beamforming: a versatile approach
to spatial filtering,” IEEE ASSP Mag., pp. 2–24, Apr. 1988.

[30] H. Sawada, R. Mukai, S. Araki, and S. Makino, “Convolutive blind
source separation for more than two sources in the frequency domain,”
in Proc. ICASSP, May 2004, pp. III-885–III-888.

[31] R. Mukai, H. Sawada, S. de la Kethulle, S. Araki, and S. Makino, “Array
geometry arrangement for frequency domain blind source separation,”
in Proc. IWAENC, Sept. 2003, pp. 219–222.

[32] D. A. Harville, Matrix Algebra From a Statistician’s Perspective. New
York: Springer-Verlag, 1997.

[33] H. Sawada, R. Mukai, S. Araki, and S. Makino, “A robust approach to
the permutation problem of frequency-domain blind source separation,”
in Proc. ICASSP, Apr. 2003, pp. 381–384.

Hiroshi Sawada (M’02) received the B.E., M.E,.
and Ph.D. degrees in information science from
Kyoto University, Kyoto, Japan, in 1991, 1993, and
2001, respectively.

In 1993, he joined NTT Communication Science
Laboratories, Kyoto. From 1993 to 2000, he was en-
gaged in research on the computer aided design of
digital systems, logic synthesis, and computer archi-
tecture. Since 2000, he has been engaged in research
on signal processing and blind source separation for
convolutive mixtures using independent component

analysis.
Dr. Sawada received the 9th TELECOM System Technology Award for Stu-

dents from the Telecommunications Advancement Foundation in 1994, and the
Best Paper Award of the IEEE Circuit and System Society in 2001. He is a
member of the IEICE and the ASJ.

Ryo Mukai (A’95–M’01) received the B.S. and the
M.S. degrees in information science from the Univer-
sity of Tokyo, Japan, in 1990 and 1992, respectively.

He joined NTT, Kyoto, Japan, in 1992. From 1992
to 2000, he was engaged in research and development
of processor architecture for network service systems
and distributed network systems. Since 2000, he has
been with NTT Communication Science Laborato-
ries, where he is engaged in research of blind source
separation. His current research interests include dig-
ital signal processing and its applications.

He is a member of ACM, the Acoustical Society of Japan (ASJ), IEICE, and
IPSJ.

Shoko Araki (M’01) received the B.E. and the M.E.
degrees in mathematical engineering and information
physics from the University of Tokyo, Tokyo, Japan,
in 1998 and 2000, respectively.

Her research interests include array signal pro-
cessing, blind source separation applied to speech
signals, and auditory scene analysis.

Ms. Araki received the TELECOM System
Technology Award from the Telecommunications
Advancement Foundation in 2004, the Best Paper
Award of the IWAENC in 2003 and the 19th Awaya

Prize from Acoustical Society of Japan (ASJ) in 2002. She is a member of the
ASJ.

Shoji Makino (A’89–M’90–SM’99–F’04) was born
in Nikko, Japan, on June 4, 1956. He received the
B.E., M.E., and Ph.D. degrees from Tohoku Univer-
sity, Sendai, Japan, in 1979, 1981, and 1993, respec-
tively.

He joined NTT, Kyoto, Japan, in 1981. He is now
an Executive Manager at the NTT Communication
Science Laboratories. His research interests include
blind source separation of convolutive mixtures of
speech, acoustic signal processing, and adaptive fil-
tering and its applications such as acoustic echo can-

cellation. He is the author or coauthor of more than 170 articles in journals and
conference proceedings and has been responsible for more than 140 patents.

Dr. Makino received the TELECOM System Technology Award from the
Telecommunications Advancement Foundation in 2004, the Best Paper Award
of the IWAENC in 2003, the Paper Award of the IEICE in 2002, the Paper Award
of the ASJ in 2002, the Achievement Award of the IEICE in 1997, and the Out-
standing Technological Development Award of the ASJ in 1995. He is a member
of the Conference Board of the IEEE Signal Processing Society and an Asso-
ciate Editor of the IEEE TRANSACTIONS ON SPEECH AND AUDIO PROCESSING.
Dr. Makino is a member of the ASJ and the IEICE. He is a member of the Tech-
nical Committee on Audio and Electroacoustics as well as Speech of the IEEE
Signal Processing Society. He is a member of the International ICA Steering
Committee and the Organizing Chair of the 2003 International Conference on
Independent Component Analysis and Blind Signal Separation. He is the Gen-
eral Chair of the 2003 International Workshop on Acoustic Echo and Noise Con-
trol. He was a Vice Chair of the Technical Committee on Engineering Acoustics
of the IEICE.


	toc
	A Robust and Precise Method for Solving the Permutation Problem 
	Hiroshi Sawada, Member, IEEE, Ryo Mukai, Member, IEEE, Shoko Ara
	I. I NTRODUCTION

	Fig.€1. BSS for convolutive mixtures.
	II. BSS FOR C ONVOLUTIVE M IXTURES
	A. Problem Formulation


	Fig.€2. Flow of frequency-domain BSS.
	B. Frequency-Domain BSS
	III. T WO E XISTING A PPROACHES

	Fig.€3. Directivity patterns for two sources.
	A. Direction of Arrival (DOA) Approach

	Fig.€4. Envelopes of two output signals at different frequencies
	B. Correlation Approach
	IV. N EW R OBUST AND P RECISE M ETHOD
	A. Basic Idea of the Method


	Fig.€5. Pseudo-code for the first version of the proposed method
	B. Exploiting the Harmonic Structure of Signals

	Fig.€6. Pseudo-code for the harmonic part of the proposed method
	C. Closed-Form Formula for Estimating DOAs

	TABLE€I E XPERIMENTAL C ONDITIONS
	V. E XPERIMENTAL R ESULTS

	Fig.€7. Separation results for 12 pairs of speech signals with s
	TABLE€II C OMPUTATIONAL T IME (S)
	Fig.€8. SIRs measured at frequencies. The permutation problems w
	Fig.€9. Differences between the correlation sums of two possible
	Fig.€10. DOA estimations with confidence.
	VI. C ONCLUSION
	E STIMATING THE M IXING M ATRIX FOR AN $N<M$ C ASE
	E QUIVALENCE B ETWEEN $\theta_{k}$ AND A N ULL D IRECTION
	C ALCULATION OF ${\ssr MaxSIR}$

	S. Haykin, Ed., Unsupervised Adaptive Filtering (Volume I: Blind
	T. W. Lee, Independent Component Analysis Theory and Application
	A. Hyvärinen, J. Karhunen, and E. Oja, Independent Component Ana
	S. Amari, S. C. Douglas, A. Cichocki, and H. H. Yang, Multichann
	M. Kawamoto, K. Matsuoka, and N. Ohnishi, A method of blind sepa
	K. Matsuoka and S. Nakashima, Minimal distortion principle for b
	S. C. Douglas and X. Sun, Convolutive blind separation of speech
	P. Smaragdis, Blind separation of convolved mixtures in the freq
	S. Kurita, H. Saruwatari, S. Kajita, K. Takeda, and F. Itakura, 
	M. Z. Ikram and D. R. Morgan, A beamforming approach to permutat
	S. Araki, S. Makino, Y. Hinamoto, R. Mukai, T. Nishikawa, and H.
	J. Anemüller and B. Kollmeier, Amplitude modulation decorrelatio
	N. Murata, S. Ikeda, and A. Ziehe, An approach to blind source s
	F. Asano, S. Ikeda, M. Ogawa, H. Asoh, and N. Kitawaki, A combin
	H. Sawada, R. Mukai, S. Araki, and S. Makino, Polar coordinate b
	L. Parra and C. Spence, Convolutive blind separation of nonstati
	L. Schobben and W. Sommen, A frequency domain blind signal separ
	A. D. Back and A. C. Tsoi, Blind deconvolution of signals using 
	R. H. Lambert and A. J. Bell, Blind separation of multiple speak
	T. W. Lee, A. J. Bell, and R. Orglmeister, Blind source separati
	M. Joho and P. Schniter, Frequency domain realization of a multi
	H. Buchner, R. Aichner, and W. Kellermann, A generalization of a
	S. Winter, H. Sawada, and S. Makino, Geometrical understanding o
	A. Bell and T. Sejnowski, An information-maximization approach t
	S. Amari, Natural gradient works efficiently in learning, Neural
	A. Hyvärinen, Fast and robust fixed-point algorithm for independ
	J. F. Cardoso and A. Souloumiac, Blind beamforming for nongaussi
	K. Matsuoka, M. Ohya, and M. Kawamoto, A neural net for blind se
	B. D. Van Veen and K. M. Buckley, Beamforming: a versatile appro
	H. Sawada, R. Mukai, S. Araki, and S. Makino, Convolutive blind 
	R. Mukai, H. Sawada, S. de la Kethulle, S. Araki, and S. Makino,
	D. A. Harville, Matrix Algebra From a Statistician's Perspective
	H. Sawada, R. Mukai, S. Araki, and S. Makino, A robust approach 



