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1. Introduction
Estimating the number of sources provides useful in-

formation for signal processing applications, such as blind
source separation (BSS) in the frequency domain [1]. It is
well known that the number of dominant eigenvalues of the
spatial correlation matrix corresponds to the number of
sources [2,3]. However, it is difficult to distinguish dominant
eigenvalues from the other eigenvalues in a reverberant case
as shown in Sect. 3. This difficulty has already been pointed
out in [3], where they propose the use of support vector
machines (SVM) to classify eigenvalue distributions and
determine the number of sources. However, the SVM needs to
be trained beforehand and experimental results were provided
only for 1- or 2-source cases.

This letter first discusses the problem of the conventional
eigenvalue-based method when applied to a reverberant
condition. Then we propose a new approach for estimating
the number of sources that employs independent component
analysis (ICA). Experimental results show the characteristics
of the proposed approach compared with the conventional
eigenvalue-based method.

2. Convolutive mixtures and frequency-domain approx-
imation
Suppose that N source signals s1ðtÞ; . . . ; sNðtÞ are con-

volutively mixed and observed at M sensors

x jðtÞ ¼
XN

k¼1

XP�1

l¼0
h jkðlÞskðt � lÞ þ n jðtÞ; ð1Þ

where h jkðlÞ represents the impulse response from source k to
sensor j, P represents the duration of the impulse responses,
and n jðtÞ is an additive Gaussian noise for each sensor. The
goal is to estimate the number of sources N only from the
observations x1ðtÞ; . . . ; xMðtÞ. We assume that the number of
sensors M is larger than or equal to the number of sources N,
i.e. N � M.

It is effective to convert the time-domain convolutive
mixtures x jðtÞ into frequency-domain time-series signals
xjð f ; �Þ with a short-time Fourier transform (STFT). This is
because convolutive mixtures (1) can be approximated as
multiple instantaneous mixtures in the frequency domain:

xjð f ; �Þ ¼
XN

k¼1
hjkð f Þskð f ; �Þ þ njð f ; �Þ; ð2Þ

where hjkð f Þ is the frequency response from source k to sensor
j, and skð f ; �Þ and njð f ; �Þ are frequency-domain time-series
signals of skðtÞ and n jðtÞ obtained similarly with STFT,
respectively. The vector notation of Eq. (2) is

xð f ; �Þ ¼
XN

k¼1
hkð f Þskð f ; �Þ þ nð f ; �Þ; ð3Þ

where x ¼ ½x1; . . . ; xM�T , hk ¼ ½h1k; . . . ; hMk�T and n ¼
½n1; . . . ; nM�T .

3. Conventional eigenvalue-based method
The conventional eigenvalue-based method estimates the

number of sources in the following way [2,3]. It performs
eigenvalue decomposition for the spatial correlation matrix
Rð f Þ ¼ hxð f ; �Þxð f ; �ÞHi� , where h�i� denotes the averaging
operator and �H denotes the conjugate transpose. Let �1 �
� � � � �N � � � � � �M be the sorted eigenvalues of R. If the
approximation by Eq. (2) holds sufficiently well, the number
of dominant eigenvalues is equal to the number of sources N,
and the remaining M � N smallest eigenvalues are the same
as the noise power: �Nþ1 ¼ � � � ¼ �M ¼ �n

2. However, there
are two problems in a real reverberant condition.

Reverberation If the reverberation of a mixing system is

long and strong, the approximation provided by Eq. (2)

does not hold sufficiently well and the number of

dominant eigenvalues might be more than the number

of sources.

Unrecovered power If some of the mixing vectors

h1; . . . ;hN are similar, the number of dominant eigen-

values might be less than the number of sources. In this

case, the first few eigenvalues represent almost all

powers. A typical situation can be seen in low fre-

quencies, where the phase differences among sensors

are very small.
Because of these two problems, the eigenvalue-based method
does not work well in a real reverberant condition. Figure 1
shows normalized component powers estimated by the
eigenvalue-based method in an environment whose conditions
are summarized in Fig. 2. The left hand plot shows a one-
source case. Because of reverberations, the normalized
powers of the second principal components were around
�20 dB. To distinguish between the source and the noises
(including reverberations), a threshold of around �15 dB is
suitable for the one-source case. However, if such a threshold
is used for the three-source case shown in the right hand plot,�e-mail: sawada@cslab.kecl.ntt.co.jp
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the number of sources is estimated at two in most frequency
bins. Therefore, it is hard to find a threshold that works well
for both cases.

4. Proposed ICA-based method
In this section, we propose a new method for estimating

the number of sources that solves the two problems mentioned
above.

To solve the problem of unrecovered power, the
proposed method recovers the power of each signal measured
at the sensors by using ICA [4] and a scaling technique. It first
applies ICA for xð f ; tÞ to obtain M separated signals:

yð f ; �Þ ¼ Wð f Þxð f ; �Þ; ð4Þ

where W is an M �M separation matrix and y ¼
½y1; . . . ; yM�T is the vector of the separated signals. N elements
of y correspond to sources and the remaining M � N elements
correspond to noise components (including reverberations).
The scaling ambiguity of ICA means that the power of each
element of y might be different from the power of each source
or noise, and the M � N noise components are generally
enhanced. To recover the power of each source or noise
measured at the sensors, we determine the scaling ambiguity
by

W  �W ; � ¼ sqrtðdiag½ðWWHÞ�1�Þ; ð5Þ

where diagð�Þ retains only the diagonal elements and makes
the non-diagonal elements zero, and sqrtð�Þ calculates the
square root of each element. We call Eq. (5) power-recovery
scaling since the power of each source measured at the

sensors is recovered at each output:

jyið f ; �Þj2 ¼
XM

j¼1
jhjkð f Þskð f ; �Þj2 ð6Þ

if ICA is properly solved and yi’s are made mutually
independent. This solves the problem of unrecovered power.

Then we consider the problem of reverberation. Assume
that a separated signal ykð f ; �Þ is a source component and
another separated signal yið f ; �Þ is not a source component but
includes the reverberation of the source corresponding to
ykð f ; �Þ. Then, the reverberant component yið f ; �Þ should have
a similar time structure to ykð f ; �Þ. The similarity can be
calculated by the correlation

hvið�Þ � vkð� ���Þi�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hvi2ð�Þi�

p
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hvk2ð� ���Þi�

p ð7Þ

of envelopes við�Þ ¼ jyið f ; �Þj � hjyið f ; �Þji� with an appro-
priate time delay ���. If the correlation is large enough, we
consider yið f ; �Þ to be a reverberant component.

The overall procedure of the method is as follows.
1. Obtain independent components yið f ; �Þ by using ICA

(4) and the scaling formula (5), and then calculate the
normalized power NPi ¼ hjyið�Þj2i�=

PM
k¼1hjykð�Þj

2i� for
i ¼ 1; . . . ;M.

2. If the normalized power NPi is smaller than a certain
threshold, e.g. 0.01 (�20 dB), we consider yi to be a
noise component.

3. If the normalized power NPi is smaller than a certain
threshold, e.g. 0.2, and one of the correlations (7) among
other components is larger than a certain threshold, e.g.
0.5, we consider yi to be a reverberant component.

4. Otherwise, we consider the i-th component yi to be a
signal.

These thresholds can be determined beforehand by the power
levels of the background noise and reverberations.

5. Experimental results
We performed experiments to estimate the number of

sources. Sensor measurements were made under the con-
ditions summarized in Fig. 2. We tested cases of one, two and
three sources, while the number of sensors was three for all
cases. Figure 3 shows the numbers of sources estimated by
using the conventional eigenvalue-based method and the
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Fig. 1 Normalized component powers estimated by the
eigenvalue-based method (The powers of the first,
second and third principal components are represented
by solid, gray, and dashed-gray lines, respectively).
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Fig. 2 Experimental conditions.
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Fig. 3 Estimated numbers of sources.
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proposed ICA-based method. The vertical axis shows the
number of frequency bins for each estimated number of
sources. The STFT frame size was 512 for a sampling rate of
8,000Hz, and thus the total number of frequency bins to cover
0–4,000Hz was 257. By taking the maximum vote, the ICA-
based method successfully estimated the number of sources in
all cases, whereas the eigenvalue-based method estimated the
number of sources to be two in all cases.

Figure 4 shows how well the powers of the sources were
recovered by using ICA and the proposed scaling technique.
The left hand plot shows the normalized powers of the three
sources measured at the sensors, and the right hand plot shows
those estimated with ICA and the scaling formula (5). The
powers were sufficiently well recovered to estimate the
number of sources. Compared with the result obtained with
the eigenvalue-based method (the right hand plot in Fig. 1),
the advantage of the proposed method becomes clear.

Figure 5 shows how the proposed method copes with the
reverberation problem. The left hand plot shows the normal-
ized power of the first and second largest components of the
scaled ICA outputs when there was one source. It was hard to
decide solely from these normalized powers whether the
second component was a signal or a noise because the powers
of the second components were not sufficiently small in many
frequency bins. However, by calculating the correlation (7) of
the envelopes between the first and second components, it

became clear that the second component was a noise
component including reverberations. The right hand plot
shows the correlations, which were sufficiently large (around
0.8) in many frequency bins.

6. Conclusion
We have proposed a new method for estimating the

number of sources. This method recovers the power of each
source measured at the sensors by using ICA and power-
recovery scaling. The method can also identify a noise
component that includes reverberations by calculating the
correlation of the envelopes.
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Fig. 4 Power recovery by scaling formula (5) when
there were three sources.
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Fig. 5 Identifying reverberant components when there
was one source.
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