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Abstract— This paper presents a method for enhancing a target source
of interest and suppressing other interference sources. The target source
is assumed to be close to sensors, to have dominant power at these sensors,
and to have non-Gaussianity. The enhancement is performed blindly, i.e.
without knowing the total number of sources or information about each
source, such as position and active time. We consider a general case where
the number of sources is larger than the number of sensors. We employ
a two-stage process where independent component analysis (ICA) is first
employed in each frequency bin and time-frequency masking is then used
to improve the performance further. We propose a new sophisticated
method for selecting the target source frequency components, and also a
new criterion for specifying time-frequency masks. Experimental results
for simulated cocktail party situations in a room (reverberation time was
130 ms) are presented to show the effectiveness and characteristics of
the proposed method.

I. INTRODUCTION

The technique for estimating individual source components from
their mixtures at sensors is known as blind source separation (BSS)
[1], [2]. With some applications such as brain imaging or wireless
communications, it makes sense to extract as many source com-
ponents as possible, because many sources are equally important.
However, with audio applications such as speech enhancement, the
sources do not necessarily have equal significance. We often want to
extract only one source that is close to sensors, has dominant power,
and/or has interesting features.

This paper presents a method for extracting a source signal
of interest and suppressing other interference sources blindly. Let
us formulate the task. Suppose that a target source s1 and other
interference sources s2, . . . , sN are convolutively mixed and observed
at M sensors

xj(t) =
∑N

k=1

∑
l
hjk(l) sk(t− l), j =1, . . . , M, (1)

where hjk(l) represents the impulse response from source k to sensor
j. The goal is to have an output signal y1(t) that is close to the
component of s1 measured at a selected sensor J :

xJ1(t) =
∑

l
hJ1(l) s1(t− l). (2)

Note that xj(t) =
∑N

k=1
xjk(t). The task should be performed only

with the M observed signals. The number of sources N is unknown
and may be larger than M .

The first problem is how to extract the target source s1 blindly.
Even if N could be larger than M , independent component analysis
(ICA) [2] with an N =M assumption produces M components that
maximize an ICA criterion such as non-Gaussianity. We assume that
the target source s1 is non-Gaussian, close to sensors, and dominant
in the mixtures. Therefore, we expect that one of the M components
corresponds to s1 whose ICA criterion is high.

We employ ICA in the time-frequency domain. The reason is that it
is efficient and also fits time-frequency masking, which is discussed in
the next paragraph. An additional operation that should be performed

is the selection of the s1 component in every frequency bin. This
is considered to be the permutation problem of frequency-domain
BSS. It has been reported that the selection of a component with
maximum kurtosis works well when the target is speech and the
interferences are babble sources [3]. However, this does not always
work well for a case where the interferences are also speech. Thus,
we exploit the information of basis vectors (8) produced by ICA. Our
previously reported methods estimate the directions [4], [5] and/or the
distances [5] of the sources from the basis vectors, and then cluster the
estimations to solve the permutation problem. However, the system
needs to know the locations of sensors to estimate such geometric
information about the sources. In Sec. II-C, we propose a new method
for solving the permutation problem. With this approach, we do not
need to know the sensor locations, simply the maximum distance
between a sensor and any other sensor. This relaxation makes it easy
to use a non-uniform arrangement of sensors, and also eliminates the
need for sensor calibration.

The next issue is that some interference still remains in the
extracted frequency components when N > M . Post filtering [3],
[6] can be used to reduce such residual interference. However, it
needs additional adaptation where the step size should be controlled
based on the short-term power of the target. Another approach
is time-frequency masking [7]–[11], which is efficient for sources
with sparseness in the time-frequency domain, such as speech. The
performance of time-frequency masking depends on how well we can
specify the time-frequency slots where the target source is active. A
simple way to specify such slots is to calculate the phase and/or
amplitude difference between the observations of different sensors
[7], [8]. Another recently proposed approach involves calculating
the power ratio between an input and outputs of a spatial filter
(beamformer [9], [11] or ICA [11]). However, such a power-based
criterion depends on the scaling ambiguity of ICA or beamformer
outputs. We propose a new criterion for specifying masks in Sec. II-
D. It is based on the cosine distance between a sample vector and the
basis vector corresponding to the target. The closeness is calculated
in a spatially whitened space where the target basis vector is expected
to be almost orthogonal to those of interferences. Therefore, the new
criterion does not suffer from the problem of scaling ambiguity.

The next section describes our proposed method. Section III shows
experimental results, and Section IV concludes this paper.

II. THE PROPOSED METHOD

A. Frequency domain operations

Figure 1 shows the flow of the method discussed here. First, time-
domain signals xj(t) sampled at frequency fs are converted into
frequency-domain time-series signals xj(f, τ ) with an L-point short-
time Fourier transform (STFT):

xj(f, τ )←∑L/2−1

r=−L/2
xj(τ + r) win(r) e−2πfr, (3)
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Fig. 1. Flow of proposed method

where f ∈ {0, 1
L

fs, . . . , L−1
L

fs} is a frequency, win(r) is a
window that tapers smoothly to zero at each end, such as a Hanning
window 1

2
(1 + cos 2πr

L
), and τ is a new index representing time.

The remaining operations are performed in the frequency domain.
There are two advantages to this. First, the convolutive mixtures (1)
can be approximated as instantaneous mixtures at each frequency:

xj(f, τ ) ≈∑N

k=1
hjk(f)sk(f, τ ), (4)

where hjk(f) is the frequency response from source k to sensor
j, and sk(f, τ ) is a frequency-domain time-series signal of sk(t)
obtained by the same operation as (3). The frequency-domain coun-
terpart of (2) is

xJ1(f, τ ) ≈ hJ1(f)s1(f, τ ), (5)

where J should be the same for all frequency bins f . The second
advantage is that the sparseness of a source signal becomes prominent
in the time-frequency domain if the source is colored and non-
stationary such as speech. The possibility of sk(f, τ ) being close
to zero is much higher than that of sk(t).

Through several operations, which will be discussed in the follow-
ing subsections, we have an output ỹ1(f, τ ), which should be close
to (5) in each frequency bin. At the end of the flow, we have an
output y1(t) by an inverse STFT (ISTFT) :

y1(τ + r)← 1

L·win(r)

∑
f∈{0, 1

L
fs, ..., L−1

L
fs}

ỹ1(f, τ ) e 2πfr.

B. Independent component analysis (ICA)

Let us have a vector notation of the mixing model (4) :

x(f, τ ) ≈∑N

k=1
hk(f)sk(f, τ ), (6)

where x = [x1, . . . , xM ]T is a sample vector and hk =
[h1k, . . . , hMk]T is the vector of frequency responses from source
sk to all sensors. Independent component analysis (ICA) is used as
a first step to identify the vector h1 of a dominant source s1.

Even though the number of independent components N may be
larger than the number of sensors M , we employ ICA by assuming
that N is equal to M :

y(f, τ ) = W(f)x(f, τ ), (7)

where y = [y1, . . . , yM ]T is a vector of independent components
and W = [w1, . . . ,wM ]H is an M × M separation matrix. In
the experiments shown in Sec. III, we calculated W by using a
complex-valued version of FastICA [2], and improved it further by
using InfoMax [12] combined with the natural gradient [13] whose
nonlinear function is based on the polar coordinate [14].

Then, we calculate the inverse of W to obtain basis vectors

[a1, · · · ,aM ] = W−1, ai = [a1i, . . . , aMi]
T . (8)

By multiplying both sides of (7) by W−1, the sample vector x(f, τ )
is represented by a linear combination of basis vectors a1, . . . ,aM :

x(f, τ ) =
∑M

i=1
ai(f)yi(f, τ ). (9)

sensor

source

Fig. 2. Direct-path (nearfield) model

Since s1 is assumed to be a dominant non-Gaussian source, it is
strongly expected that one of y1, . . . , yM corresponds to s1 and thus
one of a1, . . . ,aM corresponds to h1.

C. Permutation

The next operation is to find i for each frequency f such that
ai(f) corresponds to h1(f). As shown in [4], integrating the basis
vector ai(f) and signal envelope |yi(f, τ )| information solves the
permutation problem robustly and precisely, and we also employ this
approach here. In the rest of this subsection, we discuss a new method
for exploiting the basis vector information.

The new method involves normalizing all basis vectors ai(f), i =
1, . . . , M , for all frequency bins f = 0, 1

L
fs, . . . , L−1

L
fs such that

they form clusters, each of which corresponds to an individual source.
The normalization is performed by selecting a reference sensor J and
calculating

āji(f)← |aji(f)| exp

[

arg[aji(f)/aJi(f)]

4fc−1dmax

]
(10)

where c is the propagation velocity and dmax is the maximum dis-
tance between the reference sensor J and a sensor ∀j ∈ {1, . . . , M}.
The rationale of this operation will be explained afterwards. Then,
we apply unit-norm normalization

āi(f)← āi(f) / ||āi(f)|| (11)

for āi(f) = [ā1i(f), . . . , āMi(f)]T .
The next step is to find clusters C1, . . . , CM formed by normalized

vectors āi(f). The centroid ck of a cluster Ck is calculated by

ck ←
∑

ā∈Ck
ā/|Ck|, ck ← ck/||ck ||,

where |Ck| is the number of vectors in Ck. The clustering criterion is
to minimize the total sum J of the squared distances between cluster
members and their centroid

J =
∑M

k=1
Jk, Jk =

∑
ā∈Ck

||ā − ck||2. (12)

This minimization can be performed efficiently with the k-means
clustering algorithm [15].

This paragraph explains the reason why normalized basis vectors
āi(f) form a cluster for a source. Let us approximate the multi-path
mixing model (1) by using a direct-path (nearfield) model (Fig. 2)

hjk(f) ≈ q(f)

djk
exp

[
 2πfc−1(djk − dJk)

]
, (13)

where djk > 0 is the distance between source k and sensor j.
We assume that the phase 2πfc−1(djk − dJk) depends on the
distance normalized with the distance to the reference sensor J . This
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assumption makes the phase zero at the reference sensor J . We also
assume that the attenuation q(f)/djk depends on both the distance
and a frequency-dependent constant q(f) > 0. By considering the
permutation and scaling ambiguity of ICA, a basis vector and its
elements are represented as

ai ≈ αihk, aji ≈ αihjk, (14)

where αi represents the scaling ambiguity, and index k, which may
be different from index i, represents the permutation ambiguity.
Substituting (13) and (14) into (10) and (11) yields

āji(f) ≈ 1

djkD
exp

[


π

2

(djk − dJk)

dmax

]
, D =

√∑M

i=1

1

dik
2
,

which is independent of frequency, and dependent only on the
positions of the sources and sensors. From the fact that maxj,k |djk−
dJk| ≤ dmax, an inequality

−π/2 ≤ arg[āji(f)] ≤ π/2

holds. This property is important for the distance measure (12), since
|ā− ā′| increases monotonically as | arg(ā)− arg(ā′)| increases.

Once we have found M clusters C1, . . . , CM , we need to identify
a cluster that corresponds to the target source s1. We decide that
a cluster CK with the minimum variance K = argmink Jk/|Ck|
corresponds to s1. The rationale behind this is that the mixing model
(13) is more valid for s1 than for the other sources. The direct-
path components of impulse responses hj1 are distinct since s1 is
assumed to be close to the sensors. Finally, the output index i for
each frequency f is selected by

I(f) = argmini ||āi(f)− cK ||2.
This means that basis vector aI(f)(f) corresponds to h1(f).

After we align the index as a1(f) ← aI(f)(f) and y1(f, τ ) ←
yI(f)(f, τ ), we solve the scaling ambiguity in (9) :

a1(f)y1(f, τ ) = (α1a1(f)) (y1(f, τ )/α1),

for any non-zero complex scalar α1. This is easily solved by

y1(f, τ )← aJ1(f)y1(f, τ ),

where J is the index of the sensor specified in (5). The reason is as
follows. The goal in each frequency bin is to make y1(f, τ ) as close
to xJ1(f, τ ) defined in (5) as possible. And we can derive relations

xJ1(f, τ ) ≈ hJ1(f)s1(f, τ ) ≈ aJ1(f)y1(f, τ ).

from (5), the h1 term in (6) and the a1 term in (9).

D. Time-frequency masking

Suppose that the permutation ambiguity of ICA is solved at this
stage. The extraction of s1 by ICA (7) is represented by

y1(τ ) = wH
1 x(τ )

= wH
1 h1s1(τ ) +

∑N

k=2
wH

1 hksk(τ ).

If N ≤ M , w1 satisfies wH
1 hk = 0, ∀k ∈ {2, . . . , N} and makes

the second term zero. However, we assume that the number of
sources N is generally larger than M . In this case, there exists a
set K ⊆ {2, . . . , N} such that wH

1 hk �= 0, ∀k ∈ K. Thus, y1(τ )
contains an unwanted residual

∑
k∈K wH

1 hksk(τ ). The purpose
of time-frequency masking is to obtain another output ỹ1(τ ) that
contains less power of the residual

∑
k∈K wH

1 hksk(τ ) than y1(τ ).
Time-frequency masking is performed by

ỹ1(f, τ ) =M(f, τ ) · y1(f, τ ),

Fig. 3. Angle θ1 calculated in whitened space

Fig. 4. Masking functions with three sets of parameters (θT , g)

where 0 ≤M(f, τ ) ≤ 1 is a mask specified for each time-frequency
slot (f, τ ). We specify masks based on the angle θ1(f, τ ) between
a1(f) and x(f, τ ) calculated in the space transformed by a whitening
matrix V(f) = R−1/2, R = 〈x(τ )x(τ )H〉τ . Let z(f, τ ) =
V(f)x(f, τ ) be whitened samples and b1(f) = V(f)a1(f) be the
basis vector in the whitened space. The angle is calculated by

θ1(f, τ ) = arccos
|bH

1 (f) · z(f, τ )|
||b1(f)|| · ||z(f, τ )|| (15)

for each time-frequency slot (Fig. 3). Then, we calculate a mask by
using a logistic function (Fig. 4)

M(θ1(f, τ )) =
1

1 + eg(θ1−θT )
, (16)

where θT and g are parameters specifying the transition point and its
steepness, respectively. As θT becomes smaller, the residual power
that appears in ỹ1 decreases but the musical noise in y1 increases.

The effectiveness of the above operation depends on the sparseness
of sources. If we assume that the possibility of sk(f, τ ) being close
to zero is very high, (6) can be approximated as

x(f, τ ) ≈ hk(f)sk(f, τ ), k ∈ {1, . . . , N}, (17)

where k depends on each time-frequency slot (f, τ ). Let us consider
the whitened-space counterpart of (17), while distinguishing between
cases where s1 is the only active source (18) and other cases (19):

z(f, τ ) ≈ V(f)h1(f)s1(f, τ ) ≈ V(f)a1(f)y1(f, τ ) (18)

z(f, τ ) ≈ ∑N

k=2
V(f)hk(f)sk(f, τ ). (19)

If the number of sources N is equal to or less than the number
of sensors M , vectors Vh1, . . . , VhN in the whitened space are
orthogonal to each other. Even if N > M , the vector b1 =
Va1 of a dominant source s1, which points in almost the same
direction as Vh1, tends to have large angles with the other vectors
Vh2, . . . ,VhN . Figure 3 shows such a case. Therefore, calculating
the angle (15) provides information about whether or not s1 is the
only active source at a time-frequency slot (f, τ ).

III. EXPERIMENTS

We performed experiments to enhance a dominant speech that was
close to microphones. We measured impulse responses hjk(l) under
the conditions shown in Fig. 5. The speaker positions simulated a
cocktail party situation. Mixtures at the microphones were made by
convolving the impulse responses and 6-second English speeches
sampled at 8 kHz. Microphone arrangement was 3-dimensional
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Fig. 5. Experimental conditions

and non-uniform. The system knew only the maximum distance
(4 cm) between the reference microphone (Mic. 1) and others. For
each setup, we selected one of the four speakers (a120, b120,
c120, c170) as a dominant target source, and the others were kept
silent. The six speakers away from the microphones were used as
interferences for every setup. The frame size L of STFT (3) was
1024 (128 ms). The computational time was around 12 seconds
for 6-second speech mixtures. The program was coded in Matlab
and run on Athlon 64 FX-53. The performance was evaluated in
terms of the signal-to-interference ratio (SIR) improvement, which is
OutputSIR− InputSIR. These two types of SIRs are defined by

InputSIR = 10 log10

〈|xJ1(t)|2〉t
〈|∑

k �=1
xJk(t)|2〉t (dB),

OutputSIR = 10 log10

〈|y11(t)|2〉t
〈|∑

k �=1
y1k(t)|2〉t (dB),

where xJk(t) is defined in (2), and y1k(t) is the component of sk

that appears at output y1(t), i.e. y1(t) =
∑N

k=1
y1k(t).

Experiments were conducted with 16 combinations of 7 speeches
for each target position. Table I shows the average SIR improvements
obtained only with ICA, and by the combination of ICA and time-
frequency (T-F) masking. The SIR improvements depend on the target
position. Positions a120 and b120 were fairly good for enhancement.
This is because the interferences came from different directions. If
we consider the speaker arrangement 2-dimensionally, positions c120
and c170 seems to be a hard position as many interferences came
from similar directions. However, the result for position c170 was
very good. This is because the height of c170 was different from
those of interferences, and the 3-dimensionally arranged microphones
enable the system to exploit the height difference.

We used three sets of parameters for function (16) specifying a
mask for each time-frequency slot. The shapes of these functions
are shown in Fig. 4. Table I shows that a smaller θT resulted in
greater SIR improvements by T-F masking. However, some sounds
with a small θT were unnatural. We observed that in many cases
parameter (θT , g) = (0.333π, 20) produced natural sounds with
sufficient interference suppression. Some sound examples can be
found on our web site [16].

TABLE I
AVERAGE SIR IMPROVEMENT FOR EACH POSITION (dB)

Target position a120 b120 c120 c170

InputSIR 1.3 1.5 1.9 −0.0
Only ICA 11.7 11.8 9.0 13.0

ICA and T-F masking (0.375π, 40) 15.4 14.6 12.5 16.9
ICA and T-F masking (0.333π, 20) 16.8 15.8 14.1 18.3
ICA and T-F masking (0.25π, 20) 19.5 18.2 16.9 21.0

IV. CONCLUSION

We have presented a method for extracting a dominant target
source and suppressing other interferences. The process of ICA
and following permutation alignment extracts the target source, and
estimates the corresponding basis vector. The new method for permu-
tation alignment makes it easy to use a 3-dimensional non-uniform
arrangement of sensors without exact measurement or calibration.
Time-frequency masking in the second stage reduces the power of
the residuals caused by ICA when N > M . It exploits the sparseness
of sources. We have proposed a new criterion for specifying masks.
It is based on the angle between the target basis vector and a sample
vector, and gives information about whether or not the target source
is active. The experiments showed good results for extracting a
dominant source out from six interferences mixed in a real room.
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