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Abstract. For blind source separation (BSS) of convolutive mixtures,
the frequency-domain approach is efficient and practical, because the
convolutive mixtures are modeled with instantaneous mixtures at each
frequency bin and simple instantaneous independent component analysis
(ICA) can be employed to separate the mixtures. However, the permu-
tation and scaling ambiguities of ICA solutions need to be aligned to
obtain proper time-domain separated signals. This paper discusses the
idea that calculating the inverses of separation matrices obtained by ICA
is very important as regards aligning these ambiguities. This paper also
shows the relationship between the ICA-based method and the time-
frequency masking method for BSS, which becomes clear by calculating
the inverses.

1 Introduction

With acoustical applications of blind source separation (BSS), such as solving
a cocktail party problem, signals are generally mixed in a convolutive manner
with reverberations. Let s1, . . . , sN be N source signals and x1, . . . , xM be M
sensor observations. Then, the convolutive mixture model is formulated as

xj(t) =
N∑

k=1

∑

l

hjk(l) sk(t − l), j =1, . . . ,M, (1)

where t represents time and hjk(l) represents the impulse response from source
k to sensor j. If we consider sounds mixed in a practical room situation, impulse
responses hjk(l) tend to have hundreds or thousands of taps even with an 8 kHz
sampling rate. This makes the convolutive BSS problem very difficult compared
with the BSS of simple instantaneous mixtures.

A practical approach for such convolutive mixtures is frequency-domain BSS
[1-10], where we apply a short-time Fourier transform (STFT) to the sensor
observations xj(t). Then, the convolutive model (1) can be approximated as an
instantaneous mixture model at each frequency:

xj(f, t) =
N∑

k=1

hjk(f)sk(f, t), j =1, . . . , M, (2)
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where f represents frequency, t is now down-sampled with the distance of the
frame shift, hjk(f) is the frequency response from source k to sensor j, and
sk(f, t) is a frequency-domain time-series signal of sk(t) obtained with an STFT.
The vector notation of (2) is

x(f, t) =
N∑

k=1

hk(f)sk(f, t), (3)

where x = [x1, . . . , xM ]T and hk = [h1k, . . . , hMk]T .
Once we assume instantaneous mixtures at each frequency, and also if the

number of sources N does not exceed the number of sensors M , we can ap-
ply standard instantaneous independent component analysis (ICA) [11] to the
mixtures x(f, t) to obtain separated frequency components:

y(f, t) = W(f)x(f, t), (4)

where y = [y1, . . . , yN ]T is the vector of separated frequency components and
W = [w1, . . . ,wN ]H is an N × M separation matrix [1-6]. However, the ICA
solution has the permutation and scaling ambiguities. We need to align these
ambiguities to obtain proper time-domain separated signals.

Various studies have tried to solve these permutation and scaling problems
because they constitute a critical issue. Some of these studies have attempted
to solve the problems by using information obtained from (4), i.e the separation
matrix W and/or the separated signals y, or by imposing some constraints on
W. By contrast, we believe that the inverses of separation matrices W provide
useful information for solving these problems. The main topic of this paper is to
discuss the procedures for solving these problems by calculating the inverses.

There is also a frequency-domain BSS method that is based on time-frequency
(T-F) masking [7-10]. It does not employ a standard ICA to separate the mix-
tures, and can be applied even if the number of sources N exceeds the number
of sensors M . The method relies on the sparseness of source signals. It classifies
the mixtures x(f, t) based on spatial information extracted from them. As the
second topic of this paper, we show a link between the ICA-based method and
the T-F masking method. The link becomes clear once we have the decomposi-
tion (6) of mixtures by calculating the inverse of W. Based on the link, we see
that some of the techniques used in solving the permutation problem can also
be used for classifying the mixtures in the T-F masking method, and vice versa.

2 Calculating the Inverses of Separation Matrices

Figure 1 shows the flow of ICA-based frequency-domain BSS that we consider
in this paper. The inverse of separation matrix W is represented as

[a1, · · · ,aN ] = W−1, ai = [a1i, . . . , aMi]T , (5)
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which we call basis vectors obtained by ICA, because the mixture x(f, t) is
represented by their linear combination by multiplying W−1 and (4):

x(f, t) =
N∑

i=1

ai(f)yi(f, t). (6)

The basis vectors provide the key information with which to solve the permuta-
tion and scaling problems as shown in the following sections. If W is not square,
we use the Moore-Penrose pseudoinverse instead of the inverse. It is not difficult
to make W invertible by using an appropriate ICA procedure, such as whitening
followed by unitary transformation (e.g. FastICA [11]).

3 Solving the Permutation Problem

Various methods have been proposed for solving the permutation problem:

1. making the separation matrices W(f) smooth along frequencies f [1, 2],
2. maximizing the correlation of separated signal envelopes |yi| [3],
3. analyzing the directivity patterns calculated from W(f) [4],
4. manipulating basis vectors ai(f) [5, 6].

The third and fourth methods utilize the same information because W and ai

are related to each other through the inversion (5). However, the fourth method
is easier to apply when there are more than two sources [5, 6], because basis
vectors ai directly represent estimated mixing system information (6). This
section describes how to utilize this information for solving the permutation
problem.

3.1 Assumption and Basic Idea

If ICA works well, we obtain separated signals yi(f, t) that should be close to
source signals sk(f, t) up to the permutation and scaling ambiguities. If we com-
pare (3) and (6), we see that the basis vectors ai(f), which are obtained by ICA
and the subsequent inversion of W, should be close to the vectors hk(f), again,
up to the permutation and scaling ambiguities. The use of different subscripts,
i and k, indicates the permutation ambiguity.

STFT

ICA Inverse
Permutation 

& Scaling

ISTFT

Fig. 1. Flow of ICA-based frequency-domain BSS

Sensor

Source

Fig. 2. Direct-path
model
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The method presented here assumes a direct-path model (Fig. 2) for the vector
hk = [h1k, . . . , hMk]T , even though in reality signals are mixed in a multi-path
model (1). This simplified model is expressed in the frequency domain:

hjk(f) ≈ λjk · e−j 2πfτjk , (7)

where τjk and λjk ≥ 0 are the time delay and attenuation from source k to
sensor j, respectively. Since we cannot distinguish the phase (or amplitude) of
sk(f, t) and hjk(f), these two parameters can be considered to be relative (this
fact causes the scaling ambiguity). Thus, without loss of generality, we normalize
them and align the scaling ambiguity by

τjk = (djk − dJk)/c, (8)

∑M
j=1 λ2

jk = 1, (9)

where djk is the distance from source k to sensor j (Fig. 2), and c is the propa-
gation velocity of the signal. Normalization (8) makes τJk = 0, i.e. the relative
time delay is zero at a reference sensor J .

By following the normalizations (8) and (9), the scaling ambiguity of basis
vectors ai is aligned by the operation

ai ← ai

||ai||
e−j arg(aJi) (10)

which makes arg(aJi) = 0 and ||ai|| = 1. Now, the task as regards the permuta-
tion problem is to determine a permutation Πf that relates the subscript i and
k with i = Πf (k), and to estimate parameters τjk, λjk that make the model (7)
match the aji(f) element of a basis vector. This can be formulated so as to find
Πf , τjk and λjk that minimize the cost function:

J =
∑

f∈F

N∑

k=1

M∑

j=1

|aji(f) − λjk · e−j 2πfτjk |2, i = Πf (k), (11)

where F is the set of frequencies that we have to consider.

3.2 Clustering Frequency-Normalized Basis Vectors

If we consider the frequency range where spatial aliasing does not occur:

F = {f : −π < 2πfτjk < π, ∀j, k} (12)

we can introduce the frequency normalization technique [6] to minimize the cost
function (11). Let dmax be the maximum distance between the reference sensor
J and any other sensor. Then the relative time delay is bounded by

max
jk

|τjk| ≤ dmax/c (13)
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and therefore the frequency range F can be expressed with

F = {f : 0 < f <
c

2dmax
} . (14)

The frequency normalization technique [6] removes frequency dependence from
the elements of scale-normalized basis vectors (10):

āji(f) ← |aji(f)| exp
[
j
arg[aji(f)]
4fc−1dmax

]
. (15)

The rationale of dividing the argument by 4fc−1dmax is discussed in [6]. With
this operation, the cost function (11) is converted to

J̄ =
∑

f∈F

N∑

k=1

M∑

j=1

|āji(f) − h̄jk|2, i = Πf (k) (16)

where
h̄jk = λjk · exp[−j

π

2
· c · τjk

dmax
] (17)

is a frequency-normalized model. In a vector notation

J̄ =
∑

f∈F

N∑

k=1

||āi(f) − h̄k||2, i = Πf (k), (18)

where āi = [ā1i, . . . , āMi]T and h̄k = [h̄1k, . . . , h̄Mk]T . Because the model h̄k

do not depend on frequency, J̄ can be minimized efficiently by a clustering
algorithm that iterates the following two updates until convergence:

Πf ← argminΠ

N∑

k=1

||āΠ(k)(f) − h̄k||2 , for each f ∈ F , (19)

h̄k ←
∑

f∈F
āΠf (k)(f), h̄k ← h̄k/||h̄k|| , for each k = 1, . . . , N . (20)

The first update (19) optimizes the permutation Πf for each frequency f with
the current model h̄k. The second update (20) calculates the most probable
model h̄k with the current permutations. This set of updates is very similar to
that of the k-means algorithm [12].

After the algorithmhas converged, the permutation ambiguity in each frequency
bin is aligned by

ak(f) ← aΠf (k)(f), yk(f, t) ← yΠf (k)(f, t), k = 1, . . . , N. (21)

In addition to aligning the permutations, the method estimates the model
parameters by

τjk = − 2
π

· dmax

c
arg(h̄jk), λjk = |h̄jk| . (22)

From these parameters and sensor array geometry, we can perform source
localization, such as direction-of-arrival (DOA) estimation.
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4 Solving the Scaling Problem

The ultimate goal as regards the scaling problem is to recover each source sk(t),
i.e. multichannel blind deconvolution. However, this is very difficult with colored
source signals, such as speech. A feasible goal [13, 14] is simply to recover the
observation of each source k at a reference sensor J

∑
l hJk(l) sk(t − l) . (23)

If we consider the frequency-domain counterpart of the above discussion, there
is no practical way to recover the amplitude and phase of sk(f, t) blindly, but
there is a feasible way to recover those of

hJk(f)sk(f, t) (24)

instead [3, 13]. We use this criterion for the scaling problem.
Calculating the inverse (5) and obtaining the linear combination form (6) of

x(f, t) provides an instant solution to the scaling problem. If ICA works well and
the permutation ambiguity is solved, we obtain separated signals yk(f, t) that
should be close to source signals sk(f, t), now only up to the scaling ambiguity. If
we compare (3) and (6), we see that ak(f)yk(f, t) should be close to hk(f)sk(f, t)
and therefore aJk(f)yk(f, t) should be close to hJk(f)sk(f, t). Thus the scaling
alignment can be performed simply by

yk(f, t) ← aJk(f)yk(f, t) . (25)

In other words, there is no scaling ambiguity to be considered in (6) if we do not
discriminate between ai(f) and yi(f, t).

5 A Link to the Time-Frequency Masking Method

This section reveals a link between the ICA-based method and the time-
frequency (T-F) masking method. The link becomes clear by the linear com-
bination form (6) of x(f, t) obtained by the inverse (5) of the ICA separation
matrix W(f).

Let us explain the T-F masking method, in which we assume the sparseness
of source signals, i.e. at most only one source is active for each time-frequency
slot (f, t). Based on this assumption, the mixture model (3) can be simplified as

x(f, t) = hk(f)sk(f, t), k ∈ {1, . . . , N}. (26)

where k depends on each time-frequency slot (f, t). Then, the method classi-
fies the observation vectors x(f, t), ∀f, t into N clusters C1, . . . , CN so that the
k-th cluster contains observation vectors in which the k-th source is the only ac-
tive source. After the classification, time domain separated signals yk(t) are ob-
tained by applying an inverse STFT (ISTFT) to the following classified frequency
components

yk(f, t) =

{
xJ(f, t) x(f, t) ∈ Ck,

0 otherwise.
(27)
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In the classification, the spatial information expressed in x(f, t) is extracted
and used. Typically, the phase difference normalized with frequency and/or the
amplitude difference between two sensors:

arg[x2(f, t)/x1(f, t)]
2πf

and/or
∣∣∣∣
x2(f, t)
x1(f, t)

∣∣∣∣ (28)

are calculated for the classification [7-9]. However, these papers presented only
cases with two sensors. Recently, we proposed a new technique for using all the
information of more than two sensors [10]. The technique used there is similar
to that presented in Sec. 3. Thus, we consider that various techniques for clas-
sifying observation vectors x(f, t) in the T-F masking method can be used to
classify basis vectors ai(f, t) for solving the permutation problem in the ICA-
based method, and vice versa.

Let us discuss this relationship in the following. If the sparseness assumption
is satisfied, the linear combination form (6) obtained by ICA is reduced to

x(f, t) = ai(f)yi(f, t), i ∈ {1, . . . , N}. (29)

where i depends on each time-frequency slot (f, t). If we compare (26) and (29),
we see that hk(f)sk(f, t) should be close to ai(f)yi(f, t) for each time-frequency
slot (f, t). Thus, the spatial information expressed in observation vectors x(f, t)
with the sparseness assumption (26) is the same as that of basis vectors ai(f, t) up
to the scaling ambiguity. Therefore, we can use the same techniques for extracting
spatial information from observation vectors x(f, t) and basis vectors ai(f, t).

The normalization formulas (10) and (15) and the clustering procedure of
(19) and (20) can be used not only for the ICA-based method but also the T-F
masking method. Of course, we need to replace ai(f) with x(f, t) and modify
(19) for a standard clustering algorithm such as the k-means algorithm [12].
Figure 3 shows the flows of both methods in accordance with this idea.

STFT ICA Permutation ISTFT

Normalize
& cluster

STFT T-F masking ISTFT

Normalize
& cluster

Basis vectors

Observation vectors

Fig. 3. Flows of ICA-based method (above) and time-frequency (T-F) masking method
(below)
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6 Experimental Results

We have performed experiments with the conditions shown in Fig. 4. We used
16 combinations of three speeches to evaluate the separation performance. The
system did not have to know the sensor geometry for solving the permutation
problem, but just the maximum distance dmax = 4 cm between the reference
sensor and any other sensor. The computational time was less than 3 seconds
for 3-second speech mixtures, meaning that real-time processing was possible.

4cm 3.2cm

4cm

0.8m

0.8m
1m

a

b

c

1m 
height

1.35m 
height

1.35m 
height

Room size: 
4.45 m × 3.55 m × 2.50 m

Reverberation time: 
130 ms

Sampling rate: 
8000 Hz

Sources: 
3-second speeches

STFT frame: 
size = 128 ms
shift = 32 ms

Fig. 4. Experimental conditions
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Fig. 5. Separation performance

Figure 5 shows the average signal-to-interference ratio (SIR) and signal-to-
distortion ratio (SDR), whose detailed definitions can be found in [10]. Basically,
the SIR indicates how well the mixtures are separated into the sources, and
the SDR indicates how close each separated signal is to the observation of the
corresponding source at the reference sensor. Since the number of sensors was
sufficient for the number of sources in this case, ICA-based method worked better
than T-F masking as shown in Fig. 5. We have also already obtained results with
another setup where the number of sensors was insufficient (N = 4,M = 3) and
the T-F masking method still worked [10].

7 Conclusion

In the ICA-based frequency-domain BSS, the permutation and scaling ambiguity
of the ICA solution should be aligned. Once we have the form (6) by calculating
the inverses of ICA separation matrices W, the scaling ambiguity does not have
to be considered. To align the permutation ambiguity, we can exploit the mixing
system information represented in basis vectors ai, as Sec. 3 presents an efficient
method. The form (6) clarifies the relationship between the ICA-based method
and the T-F masking method. The same technique as that presented in Sec. 3
can be used in the T-F masking method for clustering observations x(f, t) and
extracting the mixing system information.
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