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Abstract. In this paper, we study the performance effects caused by
coefficient delays in natural gradient blind deconvolution and source sep-
aration algorithms. We present a statistical analysis of the effect of co-
efficient delays within such algorithms, quantifying the relative loss in
performance caused by such coefficient delays with respect to delayless
algorithm updates. We then propose a simple change to one such algo-
rithm to improve its convergence performance.

1 Introduction

The related problems of blind source separation and multichannel deconvolution
of convolutive signal mixtures have received much attention recently in the sig-
nal processing literature [1]-[4]. Interest in such tasks has been largely driven by
the development of useful and powerful algorithms for separating and deconvolv-
ing such signal mixtures without specific knowledge of the source signals or the
mixing conditions. Several of these techniques employ a natural gradient modifi-
cation in which the estimated inverse model is applied to the parameter updates
to improve convergence performance [5]. Since the system being estimated is a
multichannel filter, such algorithms invariably employ filtered-gradient updates
that have strong ties to classic procedures in model-reference adaptive control
[6].

In developing solutions to blind deconvolution and source separation tasks,
system designers have many design choices to make. It is often convenient to
choose an algorithm structure that re-uses existing computed quantities to min-
imize the overall complexity of the coefficient updates. Another important design
tool is the approximation of two-sided infinite-impulse response (IIR) systems by
truncated finite-impulse response (FIR) models. Moreover, when a derived pro-
cedure requires signals that are non-causally related to the system’s operation
at any given time, signal and coefficient delays are often introduced within the
algorithm updates to maintain causal operation. A combination of these design
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choices is often required to achieve a practical algorithm from its theoretical
derivation. The effects of these design choices on overall system performance,
however, is unclear. A careful study of any of their effects in a specific context
would help system designers understand the tradeoffs involved in building blind
deconvolution and source separation algorithms that are efficient, useful, and
practical.

In this paper, we study the performance effects caused by coefficient de-
lays in one well-known natural gradient multichannel blind deconvolution and
source separation procedure [1]. Using a simplified adaptation model, we demon-
strate through both analysis and simulation that, for a given convergence rate,
algorithms that have coefficient delays within their updates exhibit worse per-
formance than those without such delays. Simulations and analysis also show
that recomputing the delayed equalizer output with the most-recent equalizer
coeficients within the algorithm nonlinearity can improve this procedure’s per-
formance.

2 Coefficient Delay in Natural Gradient Adaptation

As described in [5], natural gradient adaptation is a modified gradient search in
which the gradient search direction is modified by the Riemannian metric ten-
sor for the associated parameter space. In [1], a simple but powerful algorithm
for multichannel blind deconvolution and source separation is derived using the
Kullback-Leibler divergence measure as the optimization criterion. This algo-
rithm has been derived assuming a particular set of coefficient delays for the var-
ious signal quantities within the updates to minimize the number of arithmetic
operations needed for its implementation. In order to account for the coefficient
delays in this algorithm, we present a generalized version of this procedure for
which the use of coefficient delays is carefully delineated. For notational simplic-
ity, we shall focus on the single-channel blind deconvolution task in this paper,
although our discussions could be easily extended to the multichannel case with
minor effort.

Let s(k) denote a sequence of i.i.d. random variables. We observe a filtered
version of this sequence given by

z(k) = Zais(k —1), 1
=0

where a; is the impulse response of an unknown mixing filter. We desire a linear
filter W(z) that extracts a scaled, time-delayed version of s(k) from z(k). A
single-channel generalized version of the natural gradient algorithm derived in
[1] computes an estimated source sequence as

L
yn(k) =D wi(n)z(k - 1), )
1=0
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where n denotes the time index of the equalizer filter coefficients {w;(n)}, 0 <
I < L, and k the time-shift of the input signal. We compute a set of filtered
output signals, given by

L
Uny ng,...napia (k) = ZwL o(Mg+1+2)Yngi (B — q), (3)
q=0
where {n1,n2,...,n2r42} denote time indices for the filter coefficients used in

this calculation. Then, the (L + 1) coefficients {w;(k)} are updated as

wi(k+1) = (1+pw(k) - pflyo0k-L)w o o (k=1), (4

0 1 %2 »*"h2L42
where {nEl)} denote the time indices of the coefficients used to update the ith
equalizer tap. The above description employs (2L+3)(L+1) different time indices
for the coefficient updates, and a practical algorithm requires careful choice of
the values of {n o } to allow both a computationally-efficient and statistically-
effective algorithm. The only constraint imposed on the values of {n( ) } is that

(l) < k to maintain causality of the overall system.

The algorithm in [1] employs the following choices for the coefficient delays
in (2)(4):n{) =k—Lforall 0<I<Ln), =k—q—landnl); ,=k—1
for0<g¢g< L With these choices, both . (k) and u.(k) become one-dimensional
signals, such that delayed versions of y.(k) and u.(k) are all that are needed
to implement the algorithm. The resulting procedure requires about four multi-
ply/adds per filter tap to implement, not counting the nonlinearity computation
f(ye—r(k — L)). These choices, however, are not the best from the standpoint
of system performance. As is well-known in adaptive control [6], algorithms that
have the least adaptation delay within the coefficient updates usually perform
the best, implying that ngl) = k should be chosen for the above procedure. The
computational penalty paid for such an update is severe-the algorithm would
require (3L+4) multiply/adds per filter coefficient to implement. Clearly, a trade-
off between algorithm complexity and algorithm performance must be made for
practical reasons, especially when L is large. But how do coefficient delays affect
overall performance of the system in a continuously-adapting scenario?

3 A Simplified Adaptation Model and Its Analysis

To better understand the performance effects caused by coefficient delays in nat-
ural gradient algorithms, we propose to study the following four single-coefficient
adaptive systems operating on the i.i.d. sequence z(k):

w(k +1) = (1 + pJw(k) — uf (w(k)z(k))z(k)lw(k)? (5)
w(k +1) = (1 + p)w(k) — uf (w(k — D)z(k))z(k)lw(k)|? (6)
wk +1) = (1+ puw(k) - uf(W(k)Z(k) a(k)lw(k — D)|? @
w(k +1) = (1 + p)w(k) — uf (w(k — D)z(k))z(k)|w(k — D)|* (8)
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In these algorithms, D is an integer parameter that sets the coefficient delays
within the updates. Eqn. (5) is similar in design to (2)—(4) when ngl) =k for all 4
and . Eqn. (8) is similar in design to the procedure in [1]. The two algorithms in
(6) and (7) are similar to versions of (2)-(4) in which coefficient delays appear in
the cost function and in the natural gradient update modification, respectively.

By studying these variants, we can determine through analysis whether al-
gorithms with significant coefficient delay within the updates, represented by
D > 1, cause significant degradation in overall system performance. To make
the analysis tractable, we shall make some additional assumptions regarding
z(k) and the form of f(y). Specifically,

— z(k) ~ Unif(—+/3,+/3) is an i.i.d. uniformly-distributed sequence with unit
variance, my = E{z%(k)} = 1.8, and m® = E{z8(k)} = 9, and

— f(y) = ¥® is a cubic nonlinearity, such that the above procedures are locally-
stable for negative-kurtosis (k).

Specific statistical assumptions and nonlinear update forms are often chosen to
perform convergence analyses of linear adaptive filtering algorithms [7]. With
these assumptions, we can determine the initial convergence behavior of the
mean value of w(k) over time as well as the steady-state value of the variance of
w(k) at convergence.

With these choices, the relation in (8) becomes

w(k +1) = (1 + pw(k) — pw®(k — D)z* (k) (9)
= (1 + p)w(k) — umaw®(k — D) + p (z* (k) — ma) w° (k — D) (10)
= (14 p)w(k) — pmaw®(k — D) + pv(k) (11)

where we have defined v(k) = (z*(k) — m4) w® (k— D) as a coefficient-dependent
noise-like term that drives the deterministic nonlinear system given by

Wk +1) = (1 + w@(k) — umaw®(k — D). (12)

Clearly, the initial convergence behavior of w(k) is dominated on average by the
dynamics of the corresponding deterministic system in (12), and the influence
of the zero-mean signal v(k) is significant only near convergence. Thus, we can
simulate the behavior of the deterministic system in (12) with @wW(0) = w(0) to
understand how w(k) converges to its optimum value. It is straightforward to
show that the stationary point of (12) occurs when W(k) = m4w®(k), or

Wes = (ma)™H* = £0.86334... (13)

for uniformly-distributed unit-variance input signals.

To determine the variance of w(k) at convergence, we can used a linearized
analysis similar to that employed in [8]. Let w(k) = W,s + A(k), where |A(k)| <
[Wss|. Then, we can represent (8) as

Was + Ak +1) = (1+ 1) (Wss + A(K)) — pma(@3, + 55, A(k — D))
+ O(uA?(k — D)) + pv(k). (14)
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Table 1. Analysis Results for Single-Coefficient Models

[Eqn. w(k + 1) Update Relation L@z
G| @+ k) — pmad (k) R
(© |1+ )50 e (6~ D) T
(7) |1+ BYBU8) — e (k) (k — D) = 2,’jfz__ll BT
® | O+wak) - pm@®k-D) | gD

Using the relationship for @s, in (13), (14) simplifies to
Ak +1) — (1 + p)A(k) + usmawiA(k — D) = uv(k). (15)

Taking z-transforms of both sides, we can relate D(z), the z-transform of A(k),
to N(z), the z-transform of v(k), as

D(z) = H(2)N(2), (16)
where the transfer function H(z) is given by
pzt

3 1
— (14 p)z~1 +5uz~P W)

H{(z) = T

Assuming that each v(k) is i.i.d., the power of A(k) in steady state is given by

E{A%(k)}ss = E{v?(k)}ss Z h*(1), (18)
1=0
where h(l) is the inverse z-transform of H(z) and
E{v*(k)}ss = E{(x"(k) — ma)*}u3? (19)
= (mg — m3)wld = 1.325077. .. (20)

for uniformly-distributed input signals.

Similar analyses can be carried out for the algorithms in (5), (6), and (7),
respectively. Table 1 shows the forms of the update relations for w(k) and the
corresponding H(z) in each case. The specific derivations are omitted for brevity.

These results allow us to fairly and accurately compare the performances
of the different single-coefficient procedures in (5)-(8) by carefully maintaining
certain convergence relationships between them. For example, we can choose
different step size values p for each procedure to maintain an identical conver-
gence rate from a specific initial w(0) and determine analytically the values of
E{A?(k)}ss in steady-state. These results can also be compared with simulations
of both the single-coefficient algorithms and their related blind deconvolution
procedures in (2)-(4) for specific forms of coefficient delay.
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Fig. 1. Comparison of analysis and simulation results for the single-coefficient update
in Eqn. (11).

4 Simulations

We now verify the analytical results presented in the previous section and com-
pare these with simulation results from single-channel blind deconvolution tasks.
From these results, we can gauge what performance degradations are caused by
coefficient delays within the algorithm updates.

Our first set of simulations is designed to verify the analytical results for the
single-coefficient systems in (5)—(8). For these simulations, z(k) is a unit-variance
Unif[—+/3, v/3] random sequence, and we have arbitrarily chosen D = 50, w(0) =
0.2 and p = 2.7062 x 10~3. With these choices, our analyses predict that the
procedure in (8) will converge to a steady-state variance of E{A%(k)}ss = 0.001
in 586 iterations. Shown in Fig. 1 are (a) the evolution of (w(k) — |m;1/4|)2, (b)
the value of E{A%(k)}s; predicted from the analysis, and (c) the evolution of the
coefficient MSE E{(w(k) — |mzl/ )2} as computed from ensemble averages of
1000 simulation runs. As can be seen, both (W(k)—\mzl/ﬂ)z and E{A%(k)},s are
accurate predictors of the coefficient MSE during the transient and steady-state
phases of adaptation, respectively.

Shown in Fig. 2 are the evolutions of the coefficient MSEs for the four systems
in (5)-(8) as well as their predicted steady-state MSEs from (18). Here, we
have chosen step sizes for each algorithm such that all of them converge from
w(0) = 0.2 to an MSE of 0.001 in 563 iterations; thus, we can accurately compare
the steady-state MSEs of each approach. As can be seen, the algorithm with
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Fig. 2. Comparison of steady-state MSE analysis and simulation results for the single-
coefficient update in Eqns. (5)—(8).

no adaptation delay performs the best, and the simulated algorithms in (6),
(7), and (8) have steady-state MSEs that are 1.31, 0.78, and 2.99 dB greater,
respectively, than that of (5). The steady-state MSE analysis determined from
(18) and Table 1 predicts similar performance degradations of 1.26, 0.76, and
2.74 dB, respectively.

An adaptive filtering analysis is only useful if it is an accurate predictor
of performance relationships for a given system and scenario. We now explore
the simulated performance of the single-channel blind deconvolution procedure
in (2)-(4) for various choices of adaptation delay within a particular blind de-
convolution task in which z(k) is generated from an i.i.d. uniformly-distributed
sequence s(k) as

10
z(k) = 0.7z(k — 1) + ) _(0.4)"s(k —4) (21)
i=0
This non-minimum-phase system cannot be equalized using simple linear pre-
diction. The algorithms studied in this case are:

— Case 1: All n,(f) = k. This procedure most closely resembles (5).

— Case 2: n(()l) =kforal 0<[<L; n,(]lll =k—qg—1and "f;?uz,n =k-—1
for 0 < ¢ < L. This procedure most closely resembles (7) with D = L.

— Case 3: The original procedure in [1]. This procedure most closely
resembles (8) with D = L.
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Fig. 3. Algorithm performance for a single-channel blind equalization task.

In each case, we have chosen L = 50. Step sizes of u = 0.001, 0.00101, and 0.00102
were chosen to provide similar convergence rates of the averaged inter-symbol
interferences ISI(k) = (12 c2(k))/(maxoc <1000 c2(k)) — 1, where c7(k) is
the combined channel-plus-equalizer impulse response. Shown in Fig. 3 are the
results. The steady-state ISIs of the equalizers for Case 2 and Case 3 are 0.31
and 1.09 dB worse than that for Case 1, respectively. The performance of the
Case 2 equalizer is especially noteworthy given its complexity; it only requires
five multiply/adds per filter coefficient, a 25% increase over the algorithm in [1].

5 Conclusions

In this paper, we have studied the performance effects caused by coefficient de-
lays in one well-known algorithm for blind deconvolution and source separation
tasks. Through a simple analytical model, we show that algorithms with co-
efficient delays within their updates have worse adaptation performance than
those without such delays. We also suggest a simple modification to improve
this algorithm’s adaptation performance. Simulations have been used to verify
the accuracy of the analyses.
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