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ABSTRACT

Natural gradient adaptation is an especially conveniertihaukfor
adapting the coefficients of a linear system in inverse filtetasks
such as blind deconvolution and equalization. Practicplémen-
tations of such methods require truncation of the filter itepue-
sponses within the gradient updates. In this paper, we stoow h
truncation of these filter impulse responses can createecgence
problems and introduces a bias into the steady-state solotione
such algorithm. We then show how this algorithm can be matlifie
to effectively mitigate these effects for estimating cal& ap-
proximations to doubly-infinite IR equalizers. Simulat®indi-
cate that the modified algorithm provides the convergenoefiis
of the natural gradient while still attaining good steathte per-
formance.

1. INTRODUCTION

The goal of blind deconvolution and equalization is to rezaas
accurately as possible a desired discrete-time signakseesi(k)

from a linearly-filtered and noisy version of this sequenigeigby
> as(k—1) +v(k),

l=—0o0

where{a;} is the impulse response of the unknown channel and
v(k) is measurement noise. Typically, this recovery is perfarme
using an adaptive finite-impulse-response (FIR) filter effdrm

L
y(k) = D wi(k)zk =), &)
1=0
wherey(k) is the recovered sequendeis the filter length, and the
coefficients{w; (k) } are adapted such thg{k) approaches a de-
layed and scaled version efk). Blind deconvolution and equal-
ization are important for tasks in areas ranging from gesjuiay
exploration to wireless communications.
Recently, a novel blind deconvolution procedure has been de
veloped that is based on a minimum mutual information dater
[1, 2]. This procedure assumes that the source sequefige
is both non-Gaussian and independent and identicallyHolised
(i.i.d.), and it employs a modified natural gradient searace-
dure [3, 4] to both simplify the coefficient updates and invero
convergence performance. The algorithm is given by

wi(k+1) = wi(k)+ plwi(k) — fy(k — L))u(k —1)] (3)
u(k) = Y wrq(k)y(k—q), (4)
q=0
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where f(y) is a nonlinearity that depends on the probability den-
sity function (p.d.f.) ofs(k) andp is a positive step size. This
algorithm requires about four multiply/adds per adaptiiterfico-
efficient, and it has been shown successfully deconvolveceou
signals without exact knowledge of the p.d.f. «f) [5]. The
natural gradient procedure on which this update is basedlsan
be extended to a wider class of algorithms, such as Bussgeng a
proaches [6, 7].

The procedure in (2)—(4) was derived in [1] as an approxima-
tion to a two-sided infinite-impulse-response (lIR) blinecdn-
volution procedure, where signal windowing and truncatieare
used to make the input-output relations and updates candaifa
finite complexity. It is not clear, however, how signal windo
ing and filter truncation affect the convergence perforneasfdhe
scheme, especially for shorter equalizer filter lengththat pre-
clude an accurate inverse of the linear measurement model. R
cently, similar issues were raised in the design of bin-radized
frequency-domain adaptive filters [8, 9], where it was shokat
causality plays an important role in achieving an unbiasetfast-
converging procedure. A study of these issues could leadtterb
procedures for a wide class of filtered-gradient algorithmdud-
ing the general class of natural gradient methods in [6, 7].

In this paper, we study the performance effects of signat win
dowing and filter truncation in natural gradient methodskfiond
deconvolution and equalization tasks. We show that the ovind
ing approximations used in the derivation of (2)—(4) hawe fib-
tential of introducing a bias into the separating solutiomjering
the overall performance of the system in steady-state. \&k th
introduce a new implementation of this natural gradienthoet
for blind deconvolution and equalization that does notesufifom
these performance limitations. The proposed algorithnuireq
about 63% more multiply/adds than the original implemearat
on a per-sample basis for equivalent filter lengths. Sinuarat
show that the proposed algorithm performs better than tbeepr
dure in (2)—(4) for practical situations involving shortuadjzer
lengths.

2. THE PROBLEM

In this section, we identify the issues associated with égadte
signal windowing and filter truncation that are present aftoce-
dure in (2)—(4). This algorithm is designed to iterativelinimize
the cost function

T(Wi(2)) = —E{log ply(k))} — % f log Wi (2) ]2z, (5)



%(k)=[z(k + L) z(k+L—1) --- o(k) z(k —1) -

- a(k—1L) - x(k—2L)]" (20)

re(—L) rp(—L+1) --- 71(0) re(1) 7 (L) 0 0
- 0 Tk(—L) Tk(—l) Tk(O) ’l“k(L— 1) ’l“k(L) 0
R(k)= : : : (21)
0 0 -~ 1p(—=L) m(-L+1) --- r%(0) re(1) -+ re(L)
where To better see the connection between the coefficient upthates
L (3) and the standard gradient procedure in (14), we shaiéy8)
We(z) = Z w,(k)z’l ©) in its delayless and non-causal form [1], such that

=0

is the z-transform of the adaptive equalizer's impulse response,

E{-} denotes statistical expectation, ghgd) is a model of the

p.d.f. of the source to be deconvolved. It can be shown thas(5

up to a constant independent of the equalizer, proportittntie
mutual information of the output signal sequerfagk)} when

wi(k+1) = wi(k)+ plwi(k) — fy(k))a(k — )] (15)
where
(k) = )Y wi(Dwy(i)x(k+q—p)  (16)

p(y) is the p.d.f. of the source sequence [10]. Minimizing this ) . . L
measure results in a sample sequence that is most independerP€fine the coefficient autocorrelation functieis) as

from sample to sample. Wher(k) is a noiseless linearly-filtered

version of an i.i.d source sequeng€(k)}, minimizing (5) results
in deconvolution of the filtered source sequence.

The natural gradient procedure used in (2)—(4) to approtdiypa

minimize (5) is a filtered-gradient one, in which &rsample de-
lay is introduced to make the updating relations causak Use-
ful to determine the form of the standard gradient algorithat
minimizes (5) for comparison. The gradient of the cost fiorct
J (Wi (2)) is straightforward to calculate assuming th&(z)
has no zeros on the unit circle; this gradient is

0T (Wi(2))
Soute . = FUGE)0-D)

1 T 1 ;
= - jwl 7
o /_7r Wk(e_j“’)e dw, (7)

wheref(y) = —0log p(y)/dy and we have used the substitution

L)1
r(i) = Y wp(Dwpyp(), —L<I<L (17)

p=0
Then, it is straightforward to show that

L

uik) = Y rp(i)z(k—p). (18)

p=—L
Thus, the update in (15) can be written as

wi(k+1) = wi(k)+ plw(k)

— fly(k) Y ro(k)e(k—p— l)]- (19)

p=—L

This update can be written in vector form by defini(k) and

z = ¢’* to transform the contour integral on the right-hand side R (k) as shown at the top of this page. Then, (19) becomes

of (5) into a Fourier integral before taking derivatives listterm

with respect taw; (k). Standard steepest descent minimization of wk+1) = wk)+p [w(k) — f(y(k))gT(k)ﬁT(k)]_(zz)

(5) would adjust the sequende; (k)} as

0T (Wi(2))

wi(k+1) = wi(k) —HW,

(8)

wherey is the algorithm step size. Using the stochastic gradient

approximation where expectations are replaced by instantss
values, and defining the quantities

w(k) = [wo(k) wi(k) --- wi(k)] ©)
x(k) = [z(k) (k1) - 2(k-L)" (10)
Wino (k) = [wL,inv (k) WL—1,inv (k) st Wo,iny (k)Ill)
’wmv,l(k) = %/ mejw(l/—l)dw’ (12)

we obtain the standard stochastic gradient minimizatiocguure
y(k) = w(k)x(k) (13)
w(k+1) = Wik)+ p[Fino (k) = Fy(R)x" (k)] (14)

Comparing (22) with (5) and (14), we make a striking dis-
covery: the update in (22) depends on signal values thahaire
within the standard gradient-based procedure. Moreoivere she
cost function depends only on the signal elements witt(h),
any signal values outside ¢§&(k), z(k—1),...,z(k— L)} used
in the coefficient updates are problematic. Introducindhdeems
could change the gradient search direction for the proeednd
ultimately bias the solution obtained by the procedure @ady-
state. These arguments are difficult to prove theoretiggiilgn
the complexity of the cost function in (5). Later, we shdlistrate
the potential problems of these terms through simple nwaleri
examples.

3. APROPOSED SOLUTION

Because the problematic terms in the coefficient updatesdire
ditive and easy to identify—they depend on input signal ealu
other than{z(k), .. ., x(k — L) }—it is relatively straightforward

to modify the algorithm in (22) to remove these additive term



Such a modification yields a new algorithm with potentialgt-b
ter convergence properties. Define the coefficient autetaiion
matrix R(k) as

Tk (0) T'k(l) Tk (L)
rr(—1) 7, (0) ri(L —1)
R(k) = : : 23)
re(—=L) (=L +1) r(0)

Unlike R(k) in (21), the matrixR (k) is symmetric, and it is guar-
anteed to be positive definite becausék) is from a valid FIR
autocorrelation function. Define the vector

2(k) R(k)x(k).

(24)

Then, the proposed algorithm update in vector form is

w(k) + pu [wik) = f(y(k))2" (k)] (25)

w(k + 1)

We can make several comments regarding the proposed algo-

rithm in (25):

1. The proposed procedure is similar, but not identicakhte mhod-
ified stochastic gradient procedure given by

wik+1) = w(k) + p [Fino (F) — F((E)x" (k)] R(K)(26)
The difference is due to the fact that,, (k)R (k) # w(k) when
Wino (k) is as defined in (11)—(12). It can be shown that the vector
[wr (k) wr-1(k) --- wo(k)]R™" (k) is an L-coefficient least-
squares estimate of the impulse response of the inverse &k
systemiW (z) [11]. Hence, for reasonable filter lengthsthe dif-

ference betweew;,. (k)R (k) andw (k) will be small in practice.

2. The termz(k) = R(k)x(k) that appears with the coefficient
updates is consistent with the derivation of the originalirel gra-
dient blind deconvolution algorithm in [1]. The differenisan the
way truncation is used within the derivation. In [1], the dbu
infinite input sequencé. .., z(k + 1), z(k), z(k —1),...} isfil-
tered by the systeriy (z)W(z~"), after which it is truncated
to finite length to obtai{ u(k), u(k — 1),...,u(k — L)} for the
coefficient updates. In (25), the input sequence is truddate fi-
nite L-sample length, filtered by the systé, (z)Wx(z~'), and
finally truncated to finite length again to obtgir (), 21 (k), .. .,
zr(k)} in z(k) for the coefficient updates. This extra truncation
step guarantees that the coefficient updates depend onheon-t
put signal samples that appear in the cost function of (5).

3. The proposed method is causal in its operation. Hencaydel
need not be introduced into the algorithm updates. It is know
that introducing delay into stochastic gradient updatesegener-
ally reduces their performanceg. by slowing their convergence
speeds, limiting the range of stable step sizes, and the like
can expect that the proposed method will achieve a moreratecu
steady-state solution than the method in [1] for identitgp sizes,
filter lengths, and numbers of iterations. Simulations appe in-
dicate this fact as well.

4. AN EFFICIENT IMPLEMENTATION

calculating the autocorrelation function of the equaliaed then
multiplying x(k) by R(k). CalculatingR(k) requires approx-
imately (L + 1)(L + 2)/2 multiply/adds, whereas multiplying
x(k) by R(k) requires(L + 1) multiply/adds. We would pre-
fer a procedure whose computational complexity in numbérs o
multiply/adds is proportional to the equalizer length. lhawfol-
lows, we develop suitable modifications to our proposed @gugr
to obtain this order of complexity. Such approximations sinei-
lar to those that were used to reduce the complexity of thggrai
natural gradient procedure in (15)—(16) to one that is priiqeal
to the equalizer length.

In most deconvolution and equalization tasks, the non-eiad
nature of the cost function limits the range of step sizes ¢ha
be used to adjust the equalizer coefficients. As such, cgexee
is not very fast, and the coefficients do not change much froen o
time instant to the next. Based on this fact, we propose tatgpd
R(k) at everyL time instants as opposed to every time instant.
Thus, whem is an integer, we set
R(nL)=R(nL—-1)=---=R(nL - L). (27)

In such a scheme, the per-sample computational load ofla&icu
ing R(k) is reduced to approximatel\L/2) + 3/2 + 1/L multi-
ply/adds at each time instant.

To develop a procedure for updatinfk), assume for the mo-
ment thatR.(k) does not change with time, such tf(k) = R
has elements;, —L <! < L. Define a(2L + 1)-element vector
t(k) as

t(k) = [to(k) ta(k) -+ ta_1(k) tan(k)]"  (28)
where
min{p,L}
(k) = 3 rivr—pa(k- ) (29)

Clearly,tp+r(k) = 2zp(k) for 0 < p < L whenr,(k) does not
change with time. The vecta k) contains the convolution of the
(2L + 1)-element sequendgy, } with the sequencéz(k), z(k —
1),...,z(k— L)} which has been padded liyzeros on the right.
The vectort (k) is quite similar tot(k — 1) and only differs from
it through the addition of terms that dependaik) and the sub-
traction of terms that depend ar{fk — L — 1). It can be shown
that

z(k)rr

tpfl(k — 1) + II)(k')Tpr
tp—1(k— 1)+ z(k)ro—p
—Z(k‘ —L— 1)7"2L+1—p

ifp=0
if1<p<L (30)

if L+1<p<2L.

tp(k) =

The update in (30) require3L + 1 multiply/adds at each time
instant to implement, which is much fewer than ftie+ 1) mul-
tiply/adds needed to implement the prodi (k).

We now show how to combine the above two approximations
to obtain a numerically-stable implementation. Since é&umes
that the autocorrelation sequencgis fixed, lettingr, = r,(k)
will introduce errors into these sliding-window calcutats, such
that the lastL elements oft(k) will no longer be accurate. We
could use a restart procedure to zero-out the errors evesgm-

The main drawback of the proposed method is its computdtiona ples, but there is in fact a more ingenious solution. We psego

complexity. It requires forming the matriR(k) from w(k) by

synchronize the calculation of thg sequence with the updating



of thet, (k) values. Specifically, we propose to ug€k) in place
of z,(k) in (25), such that the algorithm becomes

w(k+1) = w(k) +plw(k) — fy(k)z" (k)]  (31)
zp(k) = ?L+p(k) (32)
a(k)rr (k) ifp=0
-~ _ ) to1(k = 1) +x(k)ro—p(k) if1<p<L
B =N G- D e (k) <pe o)

—.’L‘(k —L— 1)7"2L+1_p(k - L)

and R (k) satisfies the block constraint in (27). Notice that the
last term on the lasL elements oft(k) depends on elements
within R(k — L). It can be shown that this procedure produces
z(k) = R(k — L)x(k) exactly wheneverk = nL. Thus, the
numerical error associated with the sliding-window coragioh
is “zeroed-out” everyL samples. Fok # nL, the last(L + 1)
elements ot (k) do not matciR (k — L)x(k) or z(k) exactly, but
the differences between these values i€)¢f:). Thus, they have
a negligible effect on the overall performance of the scheme
Equations (2) and (31)—(33) define the final form of the sim-
plified blind deconvolution algorithm, where the autoctatien
sequence, (k) is updated every time instants. The overall com-
plexity of this approach on a per-sample bas& i +5/2+1/L
multiply/adds. Since the original procedure in (2)—(4)36E + 1
multiply/adds, the new approach uses approximately 63%emor
multiply/adds than the original approach.

5. NUMERICAL SIMULATIONS

The algorithm we have derived in the single-channel caseh\igg
some claims as to its performance; namely

e The proposed algorithm is purported to have less bias in
its converged solution than that produced by the original
algorithm in (2)—(4).

The proposed algorithm is purported to perform better than
the original algorithm when equalizer truncation is anéssu

The simplified update in (31)—(33) is purported to perform
similarly to the more-complicated update in (24)—(25) on
which it is based.

Itis challenging to justify these claims theoreticallychase a full
statistical analysis of the algorithm’s convergence bihras dif-
ficult to obtain. Instead, we investigate the behaviors es¢hap-
proaches through numerical simulations. The results wbdan
these simple single-channel examples will serve to maiaatex-
tension and use of the algorithm in the multichannel casatar |
sections. In these simulation§s(k)} is generated as a pseudo-
random sequence of i.i.d. samples uniformly-distributedhie
range[—1, 1]. The parameters and values chosen for all algorithms
aref(y) = y3, L =4, w;(0) = §;—» (i.e center-spike initializa-
tion), M = 20, andp = 0.0001. One hundred simulations have
been run and the results averaged in each case.

The first example we explore involves a simple autoregressiv
channel model of the form

z(k) —0.7z(k — 1) + s(k). (34)
This autoregressive channel can be exactly equalized asifgR

filter of length L > 2 having two consecutive non-zero taps equal

to {1,0.7}. Shown in Fig. 1 are the evolutions of the ensemble
averages of the inter-symbol interference (ISl), defined as

AL
1=0 _1

i (k)

ISI(k) = (35)

max 02
0<j<M
wherec; (k) is the convolution ofw; (k) and the channel impulse
response, for the original natural gradient update in (@ prrelim-
inary approach in (25), and the proposed final algorithm tepaa
(31). As can be seen, the original algorithm has the besbperf
mance, achieving a steady-state IS| of approximately -24di&
two new methods do not perform as well as the original approac
which is to be expected given that an FIR equalizer is adequat
for this deconvolution task. Signal windowing and filtermtcation
is unlikely to improve the performance of the original aligfom,
which already works quite well in this parsimonious case.

Our second example involves the FIR channel model

(k) 0.7s(k) + s(k — 1). (36)

This channel is maximum phase, meaning that an infinitely-no
causal equalizer is required to perfectly equalize it. AHy &qual-
izer for this task will exhibit a non-zero residual I1SI. Show
Fig. 2 are the evolutions aF{ISI(k)} for the three algorithms.
In this case, the behaviors are markedly different. Both aew
gorithms converge to an ISl level of about -10dB in approxaha
3000 iterations. In contrast, the original method inifialbnverges
like the new algorithms, but it then diverges to a steadtesial
of about -2dB. This divergence is slow and deliberate, ssiiyuge
a systematic bias in the coefficient updates. We suspecthbat
culprit is the addition of the input signal terms outside ititerval
{z(k),...,z(k — L)} within the original algorithm’s coefficient
updates.

Figs. 3(a) and (b) show the ensemble-averaged values of
E{c;(15000)} for the original algorithm update in (3) as well as
the proposed algorithm update in (31), respectively, fer gbc-
ond example. Also shown on this plot are th8c error bars for
each non-zero impulse response value over the one hundned si
ulations. As can be seen, the deviations of the mean valuag aw
from the ideal respons@® 0 0 % 0 0] are smaller for the
proposed algorithm, and the error bars are also smaller s we
indicating that the convergence of the proposed method i® mo
consistent in this situation.

Our final simulation set considers the noisy measuremenéemod

z(k) =0.7s(k) +s(k — 1) + v(k), (37)

in whichv(k) is an uncorrelated Gaussian sequence with variance
02 = 1.49 x 107°VE whereSNR = 15dB is the signal-to-
noise ratio. Shown in Fig. 4 are the evolutions of the avetage
normalized MSEs

M L
Zc?(k) + 105NRZw?(k)
MSB(k) = = max CQ-(/CI)ZO -1 e
o<j<m

for the various methods as computed from one hundred simula-
tions with these signals. As can be seen, the original mestithd
suffers from a steady-state bias, although the effect &elesd in

the presence of noise. The proposed methods perform in atrobu
manner when noise is present in this case.
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Eqn. (25)
Eqgn. (31) [Proposed]
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Fig. 1: Evolutions ofE{ISI(k)} in the first example.
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Fig. 2: Evolutions ofE{ISI(k)} in the second example.

6. CONCLUSIONS

In this paper, we have uncovered a potential problem withriécpa
ular natural gradient procedure for blind deconvolutiod aqual-
ization tasks: The FIR-based filtered-gradient updatepuoasiuce
a biased solution when perfect equalization is not possilile
have proposed a modification to the algorithm that largeiyiel
nates these effects. The complexity of the algorithm, walileut
63% greater than the original approach, is still linear samber
of equalizer filter taps. Simulations show that the propasethod
performs better than the original method in situations wlaerFIR
equalizer cannot accurately deconvolve the linear channel

The results in this paper have a significant impact on the use
of the multichannel extension of (2)—(4) for separatingvodutive
mixtures of acoustic signals [12]. These issues, as welhss f
block-based implementations of the methods, are the subfec
current work.
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