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ABSTRACT
Natural gradient adaptation is an especially convenient method for
adapting the coefficients of a linear system in inverse filtering tasks
such as blind deconvolution and equalization. Practical implemen-
tations of such methods require truncation of the filter impulse re-
sponses within the gradient updates. In this paper, we show how
truncation of these filter impulse responses can create convergence
problems and introduces a bias into the steady-state solution of one
such algorithm. We then show how this algorithm can be modified
to effectively mitigate these effects for estimating causal FIR ap-
proximations to doubly-infinite IIR equalizers. Simulations indi-
cate that the modified algorithm provides the convergence benefits
of the natural gradient while still attaining good steady-state per-
formance.

1. INTRODUCTION

The goal of blind deconvolution and equalization is to recover as
accurately as possible a desired discrete-time signal sequence� �� �
from a linearly-filtered and noisy version of this sequence given by

� �� � � ���	
�
��� �� � 
� � � �� � � (1)

where�� � � is the impulse response of the unknown channel and� �� � is measurement noise. Typically, this recovery is performed
using an adaptive finite-impulse-response (FIR) filter of the form

� �� � � ���	� � � �� �� �� � 
� � (2)

where� �� � is the recovered sequence,� is the filter length, and the
coefficients�� � �� �� are adapted such that� �� � approaches a de-
layed and scaled version of� �� �. Blind deconvolution and equal-
ization are important for tasks in areas ranging from geophysical
exploration to wireless communications.

Recently, a novel blind deconvolution procedure has been de-
veloped that is based on a minimum mutual information criterion
[1, 2]. This procedure assumes that the source sequence� �� �
is both non-Gaussian and independent and identically-distributed
(i.i.d.), and it employs a modified natural gradient search proce-
dure [3, 4] to both simplify the coefficient updates and improve
convergence performance. The algorithm is given by

� � �� � �� � � � �� � � � �� � �� � � � �� �� � ���� �� � 
�� (3)

� �� � � ���	� ��
� �� �� �� � � � � (4)

where� �� � is a nonlinearity that depends on the probability den-
sity function (p.d.f.) of� �� � and� is a positive step size. This
algorithm requires about four multiply/adds per adaptive filter co-
efficient, and it has been shown successfully deconvolve source
signals without exact knowledge of the p.d.f. of� �� � [5]. The
natural gradient procedure on which this update is based canalso
be extended to a wider class of algorithms, such as Bussgang ap-
proaches [6, 7].

The procedure in (2)–(4) was derived in [1] as an approxima-
tion to a two-sided infinite-impulse-response (IIR) blind decon-
volution procedure, where signal windowing and truncationwere
used to make the input-output relations and updates causal and of
finite complexity. It is not clear, however, how signal window-
ing and filter truncation affect the convergence performance of the
scheme, especially for shorter equalizer filter lengths� that pre-
clude an accurate inverse of the linear measurement model. Re-
cently, similar issues were raised in the design of bin-normalized
frequency-domain adaptive filters [8, 9], where it was shownthat
causality plays an important role in achieving an unbiased and fast-
converging procedure. A study of these issues could lead to better
procedures for a wide class of filtered-gradient algorithms, includ-
ing the general class of natural gradient methods in [6, 7].

In this paper, we study the performance effects of signal win-
dowing and filter truncation in natural gradient methods forblind
deconvolution and equalization tasks. We show that the window-
ing approximations used in the derivation of (2)–(4) have the po-
tential of introducing a bias into the separating solution,lowering
the overall performance of the system in steady-state. We then
introduce a new implementation of this natural gradient method
for blind deconvolution and equalization that does not suffer from
these performance limitations. The proposed algorithm requires
about 63% more multiply/adds than the original implementation
on a per-sample basis for equivalent filter lengths. Simulations
show that the proposed algorithm performs better than the proce-
dure in (2)–(4) for practical situations involving short equalizer
lengths.

2. THE PROBLEM

In this section, we identify the issues associated with inadequate
signal windowing and filter truncation that are present in the proce-
dure in (2)–(4). This algorithm is designed to iteratively minimize
the cost function
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where

!" �# � � ���	� � � �� �# 
� (6)

is the #-transform of the adaptive equalizer’s impulse response,$ � �� denotes statistical expectation, and() �� � is a model of the
p.d.f. of the source to be deconvolved. It can be shown that (5) is,
up to a constant independent of the equalizer, proportionalto the
mutual information of the output signal sequence�� �� �� when() �� � is the p.d.f. of the source sequence [10]. Minimizing this
measure results in a sample sequence that is most independent
from sample to sample. When� �� � is a noiseless linearly-filtered
version of an i.i.d source sequence�� �� ��, minimizing (5) results
in deconvolution of the filtered source sequence.

The natural gradient procedure used in (2)–(4) to approximately
minimize (5) is a filtered-gradient one, in which an�-sample de-
lay is introduced to make the updating relations causal. It is use-
ful to determine the form of the standard gradient algorithmthat
minimizes (5) for comparison. The gradient of the cost function �! " �# �� is straightforward to calculate assuming that!" �# �
has no zeros on the unit circle; this gradient is� �! " �# ���� � �� � � $ �� �� �� ��� �� � 
��
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 �
�
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where� �� � � �� %&' () �� ��� � and we have used the substitution# � �� � to transform the contour integral on the right-hand side
of (5) into a Fourier integral before taking derivatives of this term
with respect to� � �� �. Standard steepest descent minimization of
(5) would adjust the sequence�� � �� �� as

� � �� � �� � � � �� � � � � �! " �# ���� � �� � � (8)

where� is the algorithm step size. Using the stochastic gradient
approximation where expectations are replaced by instantaneous
values, and defining the quantities� �� � � �� � �� � � / �� � � � � �� �� �� (9)� �� � � �� �� � � �� � �� � � � � �� � ���� (10)�� ��� �� � � �� � ���� �� � � �
/ ���� �� � � � � �� ���� �� ��(11)
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we obtain the standard stochastic gradient minimization procedure� �� � � � �� �� �� � (13)� �� � �� � � �� � � � ��� ��� �� � � � �� �� ���� �� �� �(14)

To better see the connection between the coefficient updatesin
(3) and the standard gradient procedure in (14), we shall write (3)
in its delayless and non-causal form [1], such that

� � �� � �� � � � �� � � � �� � �� � � � �� �� ���" �� � 
�� �(15)

where

� � �� � � ���	� ���	� �� � ��� � �� �� � � � ) � (16)

Define the coefficient autocorrelation function� � � � as

� � � � � �
 !� !��	� �� � ���" !� !� � � �� # 
 # � � (17)

Then, it is straightforward to show that

� � �� � � ���	
�
�� � �� �� � ) � � (18)

Thus, the update in (15) can be written as

� � �� � �� � � � �� � � � �� � �� �� � �� �� �� ���	
�
�� �� �� �� � ) � 
�$�(19)

This update can be written in vector form by defining� �� � and� �� � as shown at the top of this page. Then, (19) becomes� �� � �� � � �� � � � �� �� � � � �� �� ���� �� �� � �� ���(22)

Comparing (22) with (5) and (14), we make a striking dis-
covery: the update in (22) depends on signal values that arenot
within the standard gradient-based procedure. Moreover, since the
cost function depends only on the signal elements within� �� �,
any signal values outside of�� �� � � � �� � �� � � � � � � �� � ��� used
in the coefficient updates are problematic. Introducing such terms
could change the gradient search direction for the procedure and
ultimately bias the solution obtained by the procedure in steady-
state. These arguments are difficult to prove theoreticallygiven
the complexity of the cost function in (5). Later, we shall illustrate
the potential problems of these terms through simple numerical
examples.

3. A PROPOSED SOLUTION

Because the problematic terms in the coefficient updates aread-
ditive and easy to identify—they depend on input signal values
other than�� �� � � � � � � � �� � ���—it is relatively straightforward
to modify the algorithm in (22) to remove these additive terms.



Such a modification yields a new algorithm with potentially bet-
ter convergence properties. Define the coefficient autocorrelation
matrix

� �� � as
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Unlike
� �� � in (21), the matrix

� �� � is symmetric, and it is guar-
anteed to be positive definite because� � �� � is from a valid FIR
autocorrelation function. Define the vector

� �� � � � �� �� �� � � (24)

Then, the proposed algorithm update in vector form is� �� � �� � � �� � � � �� �� � � � �� �� ���� �� �� (25)

We can make several comments regarding the proposed algo-
rithm in (25):

1. The proposed procedure is similar, but not identical to, the mod-
ified stochastic gradient procedure given by� �� � �� � � �� � � � ��� ��� �� � � � �� �� ���� �� �� � �� � �(26)

The difference is due to the fact that
�� ��� �� �� �� � �� � �� � when�� ��� �� � is as defined in (11)–(12). It can be shown that the vector�� � �� � � �
/ �� � � � � �� �� ��� 
/ �� � is an�-coefficient least-

squares estimate of the impulse response of the inverse of the FIR
system!" �# � [11]. Hence, for reasonable filter lengths�, the dif-
ference between

�� ��� �� �� �� � and� �� � will be small in practice.

2. The term� �� � � � �� �� �� � that appears with the coefficient
updates is consistent with the derivation of the original natural gra-
dient blind deconvolution algorithm in [1]. The differenceis in the
way truncation is used within the derivation. In [1], the doubly-
infinite input sequence� � � � � � �� � �� � � �� � � � �� � �� � � � �� is fil-
tered by the system!" �# �! " �# 
/�, after which it is truncated
to finite length to obtain�� �� � � � �� � �� � � � � � � �� � � �� for the
coefficient updates. In (25), the input sequence is truncated to a fi-
nite�-sample length, filtered by the system!" �# �! " �# 
/�, and
finally truncated to finite length again to obtain�#� �� � � # / �� � � � � � �#� �� �� in � �� � for the coefficient updates. This extra truncation
step guarantees that the coefficient updates depend only on the in-
put signal samples that appear in the cost function of (5).

3. The proposed method is causal in its operation. Hence, delay
need not be introduced into the algorithm updates. It is known
that introducing delay into stochastic gradient update terms gener-
ally reduces their performance,e.g. by slowing their convergence
speeds, limiting the range of stable step sizes, and the like. We
can expect that the proposed method will achieve a more-accurate
steady-state solution than the method in [1] for identical step sizes,
filter lengths, and numbers of iterations. Simulations appear to in-
dicate this fact as well.

4. AN EFFICIENT IMPLEMENTATION

The main drawback of the proposed method is its computational
complexity. It requires forming the matrix

� �� � from � �� � by

calculating the autocorrelation function of the equalizerand then
multiplying � �� � by

� �� �. Calculating
� �� � requires approx-

imately �� � ���� � *��* multiply/adds, whereas multiplying� �� � by
� �� � requires�� � ��� multiply/adds. We would pre-

fer a procedure whose computational complexity in numbers of
multiply/adds is proportional to the equalizer length. In what fol-
lows, we develop suitable modifications to our proposed approach
to obtain this order of complexity. Such approximations aresimi-
lar to those that were used to reduce the complexity of the original
natural gradient procedure in (15)–(16) to one that is proportional
to the equalizer length.

In most deconvolution and equalization tasks, the non-quadratic
nature of the cost function limits the range of step sizes that can
be used to adjust the equalizer coefficients. As such, convergence
is not very fast, and the coefficients do not change much from one
time instant to the next. Based on this fact, we propose to update� �� � at every� time instants as opposed to every time instant.
Thus, when� is an integer, we set� ���� � � ��� � �� � � � � � � ��� � �� � (27)

In such a scheme, the per-sample computational load of calculat-
ing

� �� � is reduced to approximately�� �*� � ��* � ��� multi-
ply/adds at each time instant.

To develop a procedure for updating� �� �, assume for the mo-
ment that

� �� � does not change with time, such that
� �� � � �

has elements� �, �� # 
 # � . Define a�*� � ��-element vector� �� � as

� �� � � ��� �� � � / �� � � � � � ��
/ �� � � �� �� ��� (28)

where

�� �� � � min�� ����� 	� �� "�
�� �� � , � � (29)

Clearly,
��"� �� � � #� �� � for � # ) # � when�� �� � does not

change with time. The vector
� �� � contains the convolution of the�*� � ��-element sequence��" � with the sequence�� �� � � � �� ��� � � � � � � �� � ��� which has been padded by� zeros on the right.

The vector
� �� � is quite similar to

� �� � �� and only differs from
it through the addition of terms that depend on� �� � and the sub-
traction of terms that depend on� �� � � � ��. It can be shown
that

�� �� � � 	
�

�

� �� ��� if ) � �
��
/ �� � �� � � �� ���
� if � # ) # ���
/ �� � �� � � �� ���
��� �� � � � �����" /
� if � � � # ) # *� .

(30)

The update in (30) requires�� � � multiply/adds at each time
instant to implement, which is much fewer than the�� � ��� mul-
tiply/adds needed to implement the product

�� �� �.
We now show how to combine the above two approximations

to obtain a numerically-stable implementation. Since (30)assumes
that the autocorrelation sequence�� is fixed, letting�� � �� �� �
will introduce errors into these sliding-window calculations, such
that the last� elements of

� �� � will no longer be accurate. We
could use a restart procedure to zero-out the errors every� sam-
ples, but there is in fact a more ingenious solution. We propose to
synchronize the calculation of the�� sequence with the updating



of the
�� �� � values. Specifically, we propose to use(#� �� � in place

of #� �� � in (25), such that the algorithm becomes� �� � �� � � �� � � � �� �� � � � �� �� ��(�� �� �� (31)(#� �� � � (��"� �� � (32)
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� �� ��� �� � if ) � �(��
/ �� � �� � � �� ���
� �� � if � # ) # �(��
/ �� � �� � � �� ���
� �� ��� �� � � � �����" /
� �� � �� if � � ) # *�(33)

and
� �� � satisfies the block constraint in (27). Notice that the

last term on the last� elements of
� �� � depends on elements

within
� �� � � �. It can be shown that this procedure produces(� �� � � � �� � ��� �� � exactly whenever� � ��. Thus, the

numerical error associated with the sliding-window computation
is “zeroed-out” every� samples. For� �� ��, the last�� � ��
elements of

� �� � do not match
� �� � ��� �� � or � �� � exactly, but

the differences between these values is of� �� �. Thus, they have
a negligible effect on the overall performance of the scheme.

Equations (2) and (31)–(33) define the final form of the sim-
plified blind deconvolution algorithm, where the autocorrelation
sequence�� �� � is updated every� time instants. The overall com-
plexity of this approach on a per-sample basis is� ��� � ��* � ���
multiply/adds. Since the original procedure in (2)–(4) uses �� � �
multiply/adds, the new approach uses approximately 63% more
multiply/adds than the original approach.

5. NUMERICAL SIMULATIONS

The algorithm we have derived in the single-channel case involves
some claims as to its performance; namely

� The proposed algorithm is purported to have less bias in
its converged solution than that produced by the original
algorithm in (2)–(4).

� The proposed algorithm is purported to perform better than
the original algorithm when equalizer truncation is an issue.

� The simplified update in (31)–(33) is purported to perform
similarly to the more-complicated update in (24)–(25) on
which it is based.

It is challenging to justify these claims theoretically, because a full
statistical analysis of the algorithm’s convergence behavior is dif-
ficult to obtain. Instead, we investigate the behaviors of these ap-
proaches through numerical simulations. The results observed in
these simple single-channel examples will serve to motivate an ex-
tension and use of the algorithm in the multichannel case in later
sections. In these simulations,�� �� �� is generated as a pseudo-
random sequence of i.i.d. samples uniformly-distributed in the
range�� �� ��. The parameters and values chosen for all algorithms
are� �� � � � � , � � �, � � ��� � � �
� (i.e. center-spike initializa-
tion), � � *�, and� � � �����. One hundred simulations have
been run and the results averaged in each case.

The first example we explore involves a simple autoregressive
channel model of the form� �� � � �� �	� �� � �� � � �� � � (34)

This autoregressive channel can be exactly equalized usingan FIR
filter of length� 
 *

having two consecutive non-zero taps equal

to ��� � �	�. Shown in Fig. 1 are the evolutions of the ensemble
averages of the inter-symbol interference (ISI), defined as

� � � �� � �

��	� � �� �� �

������ �
 ��� �� � � � (35)

where� � �� � is the convolution of� � �� � and the channel impulse
response, for the original natural gradient update in (3), the prelim-
inary approach in (25), and the proposed final algorithm update in
(31). As can be seen, the original algorithm has the best perfor-
mance, achieving a steady-state ISI of approximately -24dB. The
two new methods do not perform as well as the original approach,
which is to be expected given that an FIR equalizer is adequate
for this deconvolution task. Signal windowing and filter truncation
is unlikely to improve the performance of the original algorithm,
which already works quite well in this parsimonious case.

Our second example involves the FIR channel model� �� � � � �	� �� � � � �� � �� � (36)

This channel is maximum phase, meaning that an infinitely-non-
causal equalizer is required to perfectly equalize it. Any FIR equal-
izer for this task will exhibit a non-zero residual ISI. Shown in
Fig. 2 are the evolutions of

$ �� � � �� �� for the three algorithms.
In this case, the behaviors are markedly different. Both newal-
gorithms converge to an ISI level of about -10dB in approximately
3000 iterations. In contrast, the original method initially converges
like the new algorithms, but it then diverges to a steady-state ISI
of about -2dB. This divergence is slow and deliberate, suggesting
a systematic bias in the coefficient updates. We suspect thatthe
culprit is the addition of the input signal terms outside theinterval�� �� � � � � � � � �� � ��� within the original algorithm’s coefficient
updates.

Figs. 3(a) and (b) show the ensemble-averaged values of$ �� � �������� for the original algorithm update in (3) as well as
the proposed algorithm update in (31), respectively, for the sec-
ond example. Also shown on this plot are the��� error bars for
each non-zero impulse response value over the one hundred sim-
ulations. As can be seen, the deviations of the mean values away
from the ideal response�� � � � � �� are smaller for the
proposed algorithm, and the error bars are also smaller as well,
indicating that the convergence of the proposed method is more
consistent in this situation.

Our final simulation set considers the noisy measurement model� �� � � � �	� �� � � � �� � �� � � �� � � (37)

in which � �� � is an uncorrelated Gaussian sequence with variance� �� � � ��� � ��
�� � , where
�� � � ��dB is the signal-to-

noise ratio. Shown in Fig. 4 are the evolutions of the averaged
normalized MSEs

� �$ �� � �

��	� � �� �� � � ���� � ���	�� �� �� �

������ �
 � �� �� � � � (38)

for the various methods as computed from one hundred simula-
tions with these signals. As can be seen, the original methodstill
suffers from a steady-state bias, although the effect is lessened in
the presence of noise. The proposed methods perform in a robust
manner when noise is present in this case.
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Fig. 2: Evolutions of
$ �� � � �� �� in the second example.

6. CONCLUSIONS

In this paper, we have uncovered a potential problem with a partic-
ular natural gradient procedure for blind deconvolution and equal-
ization tasks: The FIR-based filtered-gradient updates canproduce
a biased solution when perfect equalization is not possible. We
have proposed a modification to the algorithm that largely elimi-
nates these effects. The complexity of the algorithm, whileabout
63% greater than the original approach, is still linear in the number
of equalizer filter taps. Simulations show that the proposedmethod
performs better than the original method in situations where an FIR
equalizer cannot accurately deconvolve the linear channel.

The results in this paper have a significant impact on the use
of the multichannel extension of (2)–(4) for separating convolutive
mixtures of acoustic signals [12]. These issues, as well as fast
block-based implementations of the methods, are the subject of
current work.
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