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ABSTRACT

In this paper, we discuss approaches for blind source sep-
aration where we can use more sensors than the number
of sources for a better performance. The discussion fo-
cuses mainly on reducing the dimension of mixed signals
before applying independent component analysis. We com-
pare two previously proposed methods. The first is based
on principal component analysis, where noise reduction is
achieved. The second is based on geometric considerations
and selects a subset of sensors according to the fact that a
low frequency prefers a wide spacing and a high frequency
prefers a narrow spacing. We found that the PCA-based
method behaves similarly to the geometry-based method for
low frequencies in the way that it emphasizes the outer sen-
sors and yields superior results for high frequencies. These
results provide a better understanding of the former method.

1. INTRODUCTION

Blind source separation (BSS) is a technique for estimating
original source signals using only sensor observations that
are mixtures of the original signals. If source signals are
mutually independent and non-Gaussian, we can employ in-
dependent component analysis (ICA) to solve a BSS prob-
lem. Although in many cases equal numbers of source sig-
nals and sensors are assumed [1], using more sensors than
source signals (overdetermined systems) often yields better
results [2–4]. Different techniques are employed to map the
mixture signal space to the reduced dimensional output sig-
nal space.

In this paper we present the results of overdetermined
BSS based on two different methods of subspace selection.
Each provides better separation results than when the num-
ber of sensors and sources is the same. The first method uti-
lizes the principal components obtained by principal compo-
nent analysis (PCA) as described in [5]. The second method
is based on geometrical selection that depends on the fre-
quency and sensor spacing as described in [6].
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Fig. 1. General framework of overdetermined BSS

We compared the two methods by undertaking experi-
ments using real world data in a reverberant environment.
We found that for low frequencies the PCA-based method
behaves similarly to the geometry-based method, while for
high frequencies the former yields better results, since it
normally removes the noise subspace more efficiently than
the geometry-based method. These results provide a better
understanding of the PCA-based approach.

2. BSS USING MORE SENSORS THAN THE
NUMBER OF SOURCES

The general framework of overdetermined BSS is shown in
Fig. 1. After the mixing process there is a subspace process-
ing stage followed by the actual ICA stage. The reasons for
this position of the subspace processing stage will be ex-
plained in Sec. 3.1. The subspace processing stage can be
subdivided into a sphering stage and a dimension reduction
stage.

We consider a convolutive BSS model with N sources
si(t) (i = 1, . . . , N) and M sensors (N < M ) that give
mixed signals xj(t) (j = 1, . . . ,M) with added noise nj(t).
The mixing process can be described by

xj(t) =

N
∑

i=1

∞
∑

l=0

hji(l)si(t− l) + nj(t) (1)

where hji(t) stands for the impulse response from source i
to sensor j. The noise is considered to be uncorrelated with
unit variance. With E {·} denoting the expectation value
and ·H the hermitian operator, the spatial correlation matrix



is therefore given by

E
{

nnH
}

= σ2

nI (2)

We employed a frequency-domain approach to solve the
convolutive BSS problem including the subspace process-
ing. First, we calculate the frequency responses of the sep-
arating system.

Thus time-domain signals x(t) = [x1(t), . . . , xM (t)]T

are converted into frequency-domain time-series signals
X(f,m) = [X1(f,m), . . . XM (f,m)]T by an L-point short
time DFT, where f = 0, fs/L, . . . , fs(L−1)/L (fs: sam-
pling frequency; m: time dependence). After subspace pro-
cessing of X(f,m), we get uncorrelated signals Z(f,m) =
[Z1(f,m), . . . , ZN (f,m)]T reduced to the dimension N .
To obtain the frequency responses Wki(f) (i, k = 1, . . . , N)
of the separating system, we solve an ICA problem Y(f,m)
= W(f) Z(f,m), where Y(f,m) = [ Y1(f,m), . . . ,
YN (f,m)]T and W(f) is a N ×N matrix whose elements
are Wki(f). We call the row vectors of W(f) unmixing
vectors wH

k (f). Yk(f,m) is a frequency-domain represen-
tation of the output yk(t) and they are made so as to be
mutually independent.

Then we obtain time-domain filters by applying an in-
verse discrete Fourier transform (DFT) to W(f). This has
an advantage in that subspace processing and ICA is em-
ployed for instantaneous mixtures, which are easier to solve
than convolutive ones.

We applied the complex version of FastICA proposed in
[7] to Z to obtain the unmixing matrix W. Z is assumed to
have a zero mean and unit variance. By using negentropy
maximization as a basis, the unmixing vector wk for each
signal is gradually improved by

wk ← E
{

Z(wH
k Z)∗g(|wH

k Z|2)
}

− (3)

E
{

g(|wH
k Z|2) + |wH

k Z|2g′(|wH
k Z|2)

}

wk

until the difference between consecutive unmixing vectors
falls below a certain threshold. ·∗ denotes the complex con-
jugate. g(·) denotes the derivative of a nonlinear function
G(·), which was here chosen as G(x) = log(a + x) with
a = 0.1. wk is orthonormalized with respect to already
existing unmixing vectors after each step.

3. SUBSPACE SELECTION

3.1. Where to place the subspace selection stage

The use of more sensors than the number of sources usually
improves the separation result. We can exploit the perfor-
mance improvement technique known from beamforming
theory. When achieving the separation, we have to apply
some dimension reduction in order to map the number of
mixed signals to the number of output signals. It appears
to be more advantageous to reduce the dimensions before
rather than after ICA as explained in the following.

If we assume virtual sources composed e.g. of noise we
could separate as many sources as the number of sensors.

Then we could select the wanted sources and therefore the
subspace after ICA. But we would face a similar problem to
the one that arises when solving the permutation problem,
which appears when we apply ICA to convolutive mixtures
in the frequency-domain [8, 9]. The more signals we have,
the more difficult it is to characterize the components of
each frequency bin uniquely and relate them to the compo-
nents of adjacent frequency bins or distinguish virtual and
real sources. We usually have more information before us-
ing ICA to select an appropriate subspace (such as sensor
spacing and eigenvalues, that give the covariance) than after
using ICA (eigenvalues are distorted due to scaling ambigu-
ity). In addition, reducing dimensions before ICA reduces
the risk of overlearning of the ICA algorithm due to the vir-
tual sources [10]. In summary it is better to reduce the di-
mensions before employing ICA.

3.2. Subspace selection based on statistical properties

Asano et al. proposed a BSS system that utilizes PCA for
selecting a subspace [5]. PCA in general gives principal
components that are by definition uncorrelated and is suited
to dimension reduction [1, 2]. Here PCA is based on the
spatial correlation matrix Rxx as given in (4). The princi-
pal components are given by the eigenvectors of Rxx onto
which the mixed signals are projected.

Rxx = E
{

XXH
}

(4)

Asano et al. consider room reflections to be uncorrelated
noise from the direct source signals si(t) in a practical sense
on condition that the time shift between direct and reflected
signal is larger than the window length used for the short
time DFT. By assuming uncorrelatedness, it follows that
the first N principal components with the largest eigenval-
ues contain a mixture of direct source signals and noise. N
denotes the number of sources. By contrast the remaining
principal components consist solely of noise.

Thus by selecting the subspace that is spanned by the
first N principal components, dimensions are effectively re-
duced by removing noise while keeping the signal of inter-
est [11].

Since PCA linearly combines the mixed signals the noise
reduction can be backed up by the increase of signal-to-
noise ratio (SNR) known from array processing [12]. In
the ideal case of coherently adding up several sensors the
increased SNRnew is given by

SNRnew = log(M) · SNRold (5)

where M denotes the number of sensors and SNRold the
SNR at a single sensor.

Here it is important to note that sphering takes places
before dimension reduction, which is based on the principal
components found by sphering and is applied in the sphered
signal space.



Bandpass
Separate &

Bandpass
Separate &

+

+

Sensors OutputSources Subband Processing + ICA

PSfrag replacements

si xj yk

N M K

d2

d1

Fig. 2. Geometry-based subspace selection

Sensors

Source i

PSfrag replacements

d2 d1

θi

Fig. 3. Definition of source direction

3.3. Subspace selection based on geometrical knowledge

A method for blind source separation has been proposed
using several separating subsystems whose sensor spacing
could be configured individually [6]. The idea is based on
the fact that low frequencies prefer a wide sensor spacing
whereas high frequencies prefer a narrow sensor spacing.
This is due to the resulting phase difference, which plays a
key role in separating signals. Therefore three sensors were
arranged in a way that gave two different sensor spacings
using one sensor as a common sensor as shown in Fig. 2.

The frequency range of the mixed signals was divided
into lower and higher frequency ranges. According to [6]
for a frequency to be adequate for a given spacing d the
condition in (6) should be fulfilled.

f ≤
αc

2d (cos(θ1)− cos(θ2))
(6)

Here α is a parameter that governs the degree to which the
phase difference exceeds π, c denotes the sound velocity
and θi stands for the i-th source’s direction as shown in
Fig. 3.

The appropriate sensor pairs were chosen for each fre-
quency range and separately used for separation in each fre-
quency range. Before ICA was applied to each chosen pair,
the mixed signals were sphered. It is important to note that
sphering takes places after dimension reduction, which is
based on geometrical considerations and is applied in the
mixed signal space.

The similarities and differences between the two sub-
space selection methods are summarized in Table 1.

Table 1. Summarized comparison

PCA-based selection Geometry-based selection

Statistical consideration Geometrical considerations

Different subspace for each
frequency range

Few different subspaces de-
pending on number of sen-
sors

First sphering, then dimen-
sion reduction

First dimension reduction,
then sphering

4. GEOMETRICAL UNDERSTANDING OF THE
PCA-BASED APPROACH

4.1. Experimental results

We examined the behavior of the PCA-based subspace se-
lection with regard to the resulting sensor selection. Speech
signals do not always comply with the assumptions of un-
correlatedness and independence, which are made when ap-
plying PCA and ICA to them. Therefore, to assess the ideal
behavior, we used artificial signals produced by a random
generator in the frequency-domain with the desired proper-
ties instead of real speech signals.

We assumed the mixing matrix H for 3 sensors and 2
sources depending on the frequency to be

H =





b1 b2

b1e
−jβ1 b2e

−jβ2

b1e
−2jβ1 b2e

−2jβ2



 (7)

where βi = 2πfdi cos θi/c and c denotes the sound veloc-
ity. It can be derived by using Fig. 3 and assuming that each
source signal has a specific but constant attenuation bi at
every sensor and d1 = d2.

The normalized sensor gain depending on the frequency
bin and sensor position for b1 = b2 is shown in Fig. 4. We
used the experimental conditions given in the first two lines
of Table 2. We can see that the PCA-based method also em-
phasizes the outer sensors with a wide spacing for low fre-
quencies as the geometrical considerations in [6] suggest.
However, the remaining sensor is not excluded but con-
tributes more the higher the frequency becomes. In Fig. 5
the normalized sensor gain is given for 7 sensors and re-
veals in particular for low frequencies a very similar be-
haviour. The outer microphones are preferred and therefore
confirmes the idea of the geometry based approach.

To investigate the effect of PCA in even more detail we
analyzed the eigenvectors and eigenvalues of the correlation
matrix Rxx of the mixed signals. A typical result for the
first and second principal components represented by the
eigenvectors with the largest and second largest eigenvalues,
respectively, is shown in Figs. 6 and 7 for each frequency
bin. The figures were generated with the same conditions as
Fig. 4
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Fig. 4. Normalized sensor gain with PCA-based subspace
selection for 3 sensors
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Fig. 5. Normalized sensor gain with PCA-based subspace
selection for 7 sensors

4.2. Interpretation of experimental results

For the first principal component all sensors contribute ap-
proximately with the same gain for low frequencies. The
second principal component in Fig. 7 already shows the em-
phasis of the outer sensors for lower frequencies. This be-
havior can be backed up by the following considerations.

Using the mixing matrix in (7) we obtain the mixed sig-
nals X in the frequency domain as

X=HS=H

[

S1

S2

]

=





b1S1 + b2S2

b1e
−jβ1S1 + b2e

−jβ2S2

b1e
−2jβ1S1 + b2e

−2jβ2S2



 (8)

where S denotes the frequency-domain time-series of the
source signals s according to Sec. 2. The scalar product
of the mixed signals X and the principal component p =
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Fig. 6. Normalized first principal component for 3 sensors
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Fig. 7. Normalized second principal component for 3 sen-
sors

[p1 p2 p3]
T yields

pHX = pHHS = b1S1(p
∗

1
+ p∗

2
e−jβ1 + p∗

3
e−2jβ1)+

b2S2(p
∗

1
+ p∗

2
e−jβ2 + p∗

3
e−2jβ2) (9)

For low frequencies the phase difference βi becomes very
small and we can approximate it by the least square error
(LSE) solution β̄i of

min
β̄i

||(p∗
1

+ p∗
2
e−jβi + p∗

3
e−2jβi)−

(p∗
1
e−β̄i + p∗

2
e−β̄i + p∗

3
e−β̄i)|| (10)

Thus we get

pHX ≈ (b1S1e
−jβ̄1 + b2S2e

−jβ̄2)(p∗
1

+ p∗
2

+ p∗
3
) (11)

The first principal component in Fig. 6 is found by max-
imizing the power E{(pHx)(pHx)H} with the constraint
||p|| = 1. By the Lagrange multiplier approach

∇
(

E{(pHX)(pHX)∗}+ γ(||p|| − 1)
)

= 0 (12)
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component for each frequency bin

where ∇ is the Nabla operator and γ the Lagrange multi-
plier.

We can show that with the approximation in (11) the
maximum is obtained if p1 = p2 = p3. This means that all
sensors have approximatly equal influence. In this case the
LSE solution for β̄i equals βi.

To explain the emphasis of the outer two sensors with
the second principal component we show that the second
sensor is completely contained in the first principal compo-
nent. The projection of the mixed signal on the first princi-
pal component yields

pHX

pHp
p

||p||=1

p1=p2=p3

≈





b1e
−jβ1S1 + b2e

−jβ2S2

b1e
−jβ1S1 + b2e

−jβ2S2

b1e
−jβ1S1 + b2e

−jβ2S2



 (13)

From comparing this result with (8) it follows that the mid-
dle sensor is nearly exactly represented by the first princi-
pal component. In contrast it does not exactly represent the
outer two sensors. Thus, to be able to represent them by the
principal components they must be considered again in the
second principal component. This results in the emphasis
of the outer sensors by the second principal component.

We will now explain why the second principal compo-
nent is dominant even after employing ICA. After project-
ing the mixed signals onto the principal components they
are normalized by the inverse square root of the respective
eigenvalue. A typical frequency dependent eigenvalue dis-
tribution is shown in Fig. 8. For low frequencies the eigen-
value of the first component is very large compared to the
eigenvalue of the second component. This means in turn
that the first component is attenuated and the second com-
ponent is amplified. Thus the second component has a dom-
inant influence when it is combined with the first principal
component by the subsequent ICA stage.

Different settings used in additional experiments also
show basically the same behavior, particularly for low fre-
quencies.

Table 2. Experimental conditions
Direction of sources 50

◦ and 150
◦

Distance of sensors d1 = d2 = 28.3 mm
Length of source signals 7.4 seconds
Sampling rate 8 kHz
Window type Hanning
Filter length 2048 points
Shifting interval 512 points
Frequency range parameter α = 1.2

Threshold for FastICA 10
−3

5. COMPARISON OF THE PCA- AND
GEOMETRY-BASED APPROACHES

5.1. Experimental results

To compare the PCA- and geometry-based methods, we sep-
arated mixtures that we obtained by convolving impulse re-
sponses hji(t) and pairs of speech signals si(t), and op-
tionally adding artificial noise nj(t). We used speech sig-
nals from the Acoustical Society of Japan (ASJ) continu-
ous speech corpus and impulse responses in the Real World
Computing Partnership (RWCP) sound scene database from
real acoustic environments [13]. The source directions θi

were estimated by the MUSIC algorithm [14]. The fre-
quency ranges were calculated based on the criteria dis-
cussed in Sec. 3.3.

We calculated the SNR at output k as 10 log
(
∑

t ys
k(t)2/

∑

t yc
k(t)2

)

where ys
k(t) is a portion of yk(t) that comes

from a source signal sk(t) and yc
k(t) = yk(t)− ys

k(t).
To avoid any influence of the permutation problem on

the result we selected the best permutation by calculating
the SNR in each frequency bin in a similar way to that de-
scribed above. The solution is ideal under the condition that
the permutation problem is perfectly solved. The experi-
mental conditions are given in Table 2.

Figures 9 and 10 show the results for both methods for
12 pairs of speech signals. Figure 9 reveals that both sub-
space methods show a similar behavior for low frequencies
independent of added noise. This confirms that the PCA-
based approach also emphasizes the wider sensor spacing
in the same way as the geometry-based method.

However, for high frequencies, while both approaches
still perform similarly if we only account for reverberation,
the PCA-based approach works better than the geometry-
based approach if noise is added (Fig. 10). We confirmed
the superior performance with additional experiments using
different sensor spacings.

5.2. Interpretation of experimental results

To interprete the experimental results of Sec. 5.1 we distin-
guish between the noiseless and noisy case.

As we have seen in Sec. 4.1 the PCA based method
also emphasizes the outer microphones for low frequencies.
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This normally provides the highest possible phase differ-
ence for low frequencies, which is important for correctly
separating the mixed signals by the subsequent ICA stage
as mentioned in Sec. 3.3.

Therefore the contribution of the middle sensor is very
small for low frequencies. In addition the PCA based method
might have problems in finding appropriate principal com-
ponents due to low phase differences which are disturbed
by noise. Thus the PCA based approach can not make great
use of the remaining sensor for low frequencies either and
therefore does not improve the performance.

As stated in Sec. 3.2 uncorrelated noise is normally re-
duced if we coherently add up the mixtures received at sev-
eral sensors. The PCA based method can utilize all available
sensors for high frequencies, since then the smaller sensor
distance is appropriate. In contrast the geometry based ap-
proach uses by definition always only two sensors. Thus the
latter cannot exploit the noise reduction as much as the PCA
based approach can.

In the noiseless case the advantage of noise suppression
of the PCA based method has no effect and therefore does
not improve the result.

6. CONCLUSION

We have compared two subspace methods for use as prepro-
cessing steps in overdetermined BSS. We found that for low
frequencies the PCA-based method exhibits a similar per-
formance to the geometry-based method because it also em-
phasizes the outer sensors. For high frequencies the PCA-
based approach performs better when exposed to noisy speech
mixtures because due to appropriate phase difference it can
utilize all pairs of sensors to suppress the noise. This deep-
ens the geometrical understanding of the PCA-based method.
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