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Abstract

In this paper we address the problem of overcomplete BSS
for convolutive mixtures following a two-step approach. In
the first step the mixing matrix is estimated, which is then
used to separate the signals in the second step. For estimating
the mixing matrix we propose an algorithm based on hierar-
chical clustering, assuming that the source signals are suffi-
ciently sparse. It has the advantage of working directly on
the complex valued sample data in the frequency-domain. It
also shows better convergence than algorithms based on self-
organizing maps. The results are improved by reducing the
variance of direction of arrival. Experiments show accurate
estimations of the mixing matrix and very low musical tone
noise even in reverberant environment.

1. Introduction

High quality separation of speech sources is an important
prerequisite for further processing like speech recognition
in environments with several active speakers. Often the un-
derlying mixing process is unknown, which requires blind
source separation (BSS). In general we can distinguish two
cases depending on the number of sources � and the number
of sensors � :

����� overcomplete BSS����� (under-) complete BSS

Since undercomplete BSS ( ��	
� ) can be reduced to com-
plete BSS ( ���� ) [1] we refer to both by complete BSS.
Most approaches assume complete mixtures [2, 3], but in re-
ality often the contrary is true. While the area of overcom-
plete BSS has obtained more and more attention [4–12], it
still remains a challenging task.

Several of the proposed algorithms are based on his-
tograms and developed for only two sensors [4–6]. Some
could, in principle, be enhanced for higher dimensions � .
But since histograms are based on densities, the so-called
curse of dimensionality [13] sets practical limits on the num-
ber of usable sensors. Another problem occurs with com-
plex numbers, which cannot be handled straightforwardly
by histograms, but are necessary if BSS is performed in the
frequency-domain. Some methods approach complex num-
bers by applying real-valued algorithms to the real and imag-�
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inary part or amplitude and phase [7, 8], which is not al-
ways applicable. Some approaches extract features like the
direction-of-arrival (DOA) or work on the amplitude relation
between two sensor outputs [4, 5, 9, 10]. In both cases only
two sensors can contribute, no matter how many sensors are
available.

Other algorithms like GeoICA [12] or AICA [11] resem-
ble self-organizing maps (SOM) and could more easily be
applied to convolutive mixtures. However, their convergence
depends on initial values.

In this paper we propose the use of hierarchical clustering
embedded into a two-stage framework of overcomplete BSS
to deal with convolutive mixtures in the frequency-domain.
This method can work directly on the complex valued sam-
ples. While it does not limit the usable numbers of sensors,
it also prevents the convergence problems which can occur
with SOM based algorithms.

After estimating the mixing matrix in the first stage, a
maximum a-posteriori (MAP) approach is applied to finally
separate the mixtures, assuming statistical independence and
Laplacian pdfs for the sources [14].

In Sec. 2 we first explain the general framework before
we give details about the hierarchical clustering in Sec. 3 and
the MAP based source separation in Sec. 4. After this, we
present experimental results in Sec. 5 demonstrating the per-
formance for convolutively mixed speech data in a real room
with reverberation time ����������� ms.

2. General framework

We will consider a convolutive mixing model with � speech
sources ������� �!�#"$�%�'&(&)& �*� and �+�,� 	-�*� sensors that
yield linearly mixed signals .0/1��� �2�435�6�7&)&)&8�6� . The mixing
can be described by

. / ��� �'�
9:
�4;2<

=: >
;?<

@ /�� �,A,��� � ���CBDA,� (1)

where
@ /����#� � denotes the impulse response from source " to

sensor 3 .
Instead of solving the problem in the time-domain, we

choose a narrowband approach in the frequency domain by
applying a short-time discrete Fourier transform (STDFT).
Thus time-domain signals E1�#� �F�HG � < ��� �JI)&)&(&�I8� 9 ��� �LKNM andO �#� �P�QG . < �#� �RI(&)&)&SI .UT��#� �VKWM are converted into frequency-
domain time-series X'�ZYUI [0�\� G ]?<^�,YUI [0�JI)&(&)&SI_] 9 �ZYUI [0�LKNM
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Figure 1: Overall unmixing system

and ��� � � �,YUI�[0� � G � < �,YUI�[0�RI(&)&)&?I�� T �,YUI [0�LKNM
by an � -point STDFT, respectively. Thereby Y �� I Y������ I?&(&)&JI�Y�� ���!B � ����� ( Y�� : sampling frequency; [ : time
dependence). Let us define � �,Y ��� � T"! 9 as a matrix
whose elements are the transformed impulse responses. We
call the column vectors #C�8�,Y � ��"$�%��I)&(&)& I8�*� mixing vec-
tors and can approximate the mixing process as

�*�ZYUI [0�7�$� �,Y �8X'�ZYUI [0��& (2)

This reduces the problem from convolutive to instanta-
neous mixtures in each frequency bin Y . For simplicity we
will omit the dependence on frequency and time. Switching
to the frequency domain has the additional advantage that
the sparseness of the sources is increased [7]. This is very
important, since the hierarchical clustering is based on the
assumption of sparse sources, which is approximately true
for speech signals.

The disadvantage of narrowband BSS in the frequency
domain is the permutation problem, which results in wrong
alignments of the frequency bins. In our framework we use
a DOA based method to reduce the permutation problem [3].
We also apply the minimum-distortion-principle [2] to solve
the scaling problem.

In complete BSS the mixing matrix � is square and (as-
suming full rank) invertible. Therefore the BSS problem can
be solved by either inverting an estimate of the mixing matrix
or directly estimating its inverse and solving (2) for X .

However, this approach does not work in overcomplete
BSS where the mixing matrix is not invertible. Therefore
we follow a two-stage approach as utilized in [7, 12] con-
sisting of blind mixing model recovery (BMMR) and blind
source recovery (BSR). To estimate the mixing matrix in the
BMMR step, we propose the use of hierarchical clustering
as described in detail in Sec. 3. To eventually separate the
signals in the BSR step, we utilize a MAP based approach.
Finally the inverse STDFT is applied to obtain time-domain
signals. The overall system is depicted in Fig. 1.

3. Blind Mixing Model Recovery

Several algorithms have been proposed so far for BMMR.
They usually have in common that they assume a certain de-
gree of sparseness of the original signals. This assumption
leads to the conclusion that the samples in the mixed vector
space �*�,YUI�[0� cluster around the true mixing vectors # � �,Y � .
This becomes clear when we consider the most sparse case
when only a single source is active. Let us rewrite (2) as

� �,YUI [0� �
9:
�4;?< # � �ZY � ] � �,YUI�[0�*& (3)

Assuming only one active source at �,YUI�[0� means that the vec-
tor pointing to the resulting mixed sample �*�,YUI�[0� is a scaled
version of the corresponding mixing vector # �8�,Y � . However,
depending on the actual sparseness of the source signals and
also the mixing system, the mixed signals will also have com-
ponents of other mixing vectors. Therefore the mixtures will
be spread around the mixing vectors but still form clusters.

3.1. Hierarchical Clustering

To avoid the problems discussed in Sec. 1, such as the curse
of dimensionality or poor convergence, we propose the use
of a hierarchical clustering algorithm for finding the clus-
ters around the mixing vectors. We follow an agglomerative
(bottom-up) strategy. [13]. This means that the starting point
is the single samples, considering them as clusters which
contain only one object. From there clusters are combined,
so that the number of clusters decreases while the average
number of objects per cluster increases. In the following we
assume phase and amplitude normalized samples

�&% �' � ' (*),+.-0/21 (4)

where 354 1 denotes the phase of the first component of � .
The combination of clusters into new clusters is an iter-

ative process and based on the distance between the current
clusters. Starting from the normalized samples, the distance
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Figure 2: Linking closest clusters
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Figure 3: Illustration of distances

between each pair of clusters is calculated, resulting in a dis-
tance matrix. At each level of the iteration the two clusters
with the least distance are combined and form a new binary
cluster (Fig. 2). This process is called linking and repeated
until the amount of clusters has decreased to a predetermined
number � , � ��� � �

(
�

: total number of samples).
For measuring the distance between clusters, we have to

distinguish between two different problems. First we need
a distance measure � ��� � 1 I�� ��� � that is applicable to � -
dimensional complex vector spaces. While there are several
possibilities, we currently use the Euclidean distance based
on the normalized samples, which is defined by

�U� ��� 1 I�� � � �'� � 	�� � � 1 B ��� � �JI(����� 1 B ��� � ��� � (5)

where 	��4I�� � stands for the inner product and � for complex
conjugation.

When a new cluster is formed, we need to enhance this
distance measure to relate the new cluster to the other clus-
ters. The method we employ here is called the nearest-
neighbor technique. Let � < and � ( denote two clusters as
illustrated in Fig. 3. Then the distance � � � < I
� ( � between
these clusters is defined as the minimum distance between
its samples by

�U��� < I
� ( �'� ������ � 1"!
# 1%$ � � � !
# � �U� � � 1 I�� ��� � & (6)

As mentioned earlier, most of the samples will cluster
around the mixing vectors #C� , depending on the sparseness
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Figure 4: Estimation of mixing vectors

of the original signals. Special attention must be paid to the
remaining samples (outliers), which are randomly scattered
in the space between the mixing vectors. Usually they are far
away from other samples and will be combined with other
clusters only at higher levels of the clustering process (i.e.
when only few clusters are left). This led us to the idea to set
the final number of clusters at a high number

�54 � & (7)

By doing so, we avoid linking these outliers with the clusters
around the mixing vectors # � and therefore distortions. This
results in more robustness. More important, however, is the
fact that we avoid combining desired clusters. Since the out-
liers are often far away from other clusters it might happen
that desired clusters are closer to each other than to outliers.

Due to the distance calculation the computational cost of
this approach is 6 �87 ( � [15], where 7 denotes the number
of samples per frequency bin. An example for the resulting
clusters is shown in Fig. 4. Experimental details are given in
Sec. 5.

3.2. Estimation of mixing matrix

Assuming that the clusters around the mixing vectors # � have
the highest densities and therefore the highest number of
samples we finally choose the � largest clusters. Thereby
the number of sources � must be known. To obtain the mix-
ing vectors, we average over all samples of each cluster

# � � �' � � ' :
� !
#:9
� I �$� "'� � (8)

where
' � � ' denotes the cardinality of cluster � � . Thereby we

assume that the influence of other sources has zero mean.

3.3. Advantages of hierarchical clustering

Among the most important advantages of the described hi-
erarchical clustering algorithm is the fact that it works di-
rectly on the sample data in any vector space of arbitrary
dimensions. The only requirement is the definition of a dis-
tance measure for the considered vector space. Therefore, it



can easily be applied to complex valued data that occurs in
frequency-domain convolutive BSS.

No initial values for the mixing vectors # � are required.
This means, in particular, that if the assumption of clusters
with high densities around the mixing vectors is true, then
the algorithm converges to those clusters.

Besides choosing a distance measure, there is only the
single parameter � that determines the number of clusters.
Experiments have shown that the choice for this parameter
is quite insensitive as long as it is above a certain limit that
would combine desired clusters. Its choice is, in general, re-
lated to the sparseness of the sources. The sparser the signals
are, the smaller the value of � can be chosen, because the
number of outliers that must be avoided will be smaller.

While the considered signals must have some degree of
sparseness, they do not have to be statistically independent at
this point to obtain clusters.

3.4. Reduction of DOA variance

Experiments have shown that as long as there are clusters
around the mixing vectors #C� , the estimation results are of
high quality. Even if the assumption of clear clusters is not
true for all mixing vectors, the remaining ones are not influ-
enced by poor estimation of others. In order to improve the
poorly estimated mixing vectors, we can utilize DOA infor-
mation.

While the mixing matrix is different for each frequency
bin, the phase difference � 3 � ������� � @ < � � @ /��V� between two
arbitrary components of a mixing vector #C�?� G @ < � &)&(& @ T �#KWM
contains information about the relative physical position of
its corresponding source " . Assuming a linear sensor array in
a far-field situation with plain wave fronts and no reverbera-
tion, the DOA � � is given by

� � �	��
� + <�� � 3C������ Y � <Z/�� (9)

where � denotes the sound velocity. � <V/ stands for the dis-
tance between the sensor that corresponds to the first compo-
nent

@ < � and the sensor that corresponds to the 3 -th compo-
nent

@ /�� .
Since � � is theoretically constant for all frequency bins,

we can consider the DOA of the " -th signal as a random vari-
able (RV) � � with mean ��� and variance � (� . While even the
DOA of the original mixing matrix has a variance larger than� (Fig. 5), the results for the estimated mixing matrix can be
improved if the variance of its DOAs is reduced.

For this purpose we define a new RV �� � with reduced
variance by�� �?�	� ��� ��� � � B�� �^������I �5� �5� �
& (10)

While its mean is still ��� , its variance �� � ( can be adjusted by� and yields ��0� ( �!��� (� & (11)

We apply the new DOA by adjusting the phase of the mix-
ing vectors #2� . The first component

@ < � stays fixed, because
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Figure 5: DOAs of original mixing matrix

we want to change only the relative phase. The remaining
components are updated by@ /�� � ' @ /�� ' )#"%$ - 1 9'& - $)(* 9'+'+ � ��3 ��� (12)

where 3'< �'�,�����0� @ < �Z� denotes the phase of
@ < � and 3 � �� �V� is

given by

3 � �� � �7� ��� Y � <V/ ��
�)� �� � �� & (13)

Since we do not need absolute DOA information, this im-
provement fully complies with the blind approach of BSS.

4. Blind Source Recovery

The unmixed signals cannot be directly obtained, because the
mixing matrix cannot be inverted in overcomplete BSS. Sev-
eral approaches have been proposed to solve blind source re-
covery [14]. Among those we chose the shortest-path algo-
rithm which is based on maximum a-posteriori (MAP) es-
timation, assuming statistical independence and Laplacian
pdfs for the sources. Given the mixed signals � and the mix-
ing matrix � , the sources X are recovered by

X � ����� ��� �� ;.-0/ 9:
�4;?<
' ] � ' & (14)

This equation can be interpreted as finding the shortest-path
decomposition, based on the mixing vectors # � for each sam-
ple � � separately. It means that each sample is assigned to
exactly � signals. While (14) can, in general, be solved for
real numbers by linear programming, we explicitly compute

all
� �� � possible decompositions and choose the one that

minimizes 1 9� ;?< ' ] � ' . Taking a selection of � mixing vec-
tors #2� 1 &)&(&�#2�32 , the decomposition is calculated by

X �6G #2� 1 &(&)&�#2�)2!K + < O " < I)&)&(&�I " T �541�1I)&(&)& I��76
(15)

Since each mixing vector has � components and assuming
full rank, the inverse exists.



Table 1: Experimental conditions
Direction of sources �^��� , �1��� , � � ���
Distance of sensors �1� mm
Length of source signals � & � seconds
Reverberation time � � �(�1� ms
Sampling frequency Y � � kHz
Window type von Hann
Filter length ��� � � points
Shifting interval

� �	� points
Cluster threshold � (const 
�Y ) 100
Variance factor � 0.8

Table 2: Detailed performance

Scenario 1 Source � Source
�

Source � Average
SIR (dB) 14.8 13.9 11.7 13.50
SDR (dB) 13.39 6.83 10.55 10.26

Scenario 2 Source � Source
�

Source � Average
SIR (dB) 10.5 6.4 9.3 8.73
SDR (dB) 7.47 2.82 5.99 5.43

Scenario 3 Source � Source
�

Source � Average
SIR (dB) 11.1 9.9 8.9 9.95
SDR (dB) 9.65 4.05 5.95 6.55

5. Experimental Results

We performed experiments with the proposed algorithm us-
ing �Q�� speech signals and � � � sensors. The signals
were taken from the Acoustical Society of Japan (ASJ) con-
tinuous speech corpus. The convolution was done with room
impulse responses that were recorded at our laboratory. Fur-
ther experimental conditions are given in Table 1.

As performance measure, we used the signal-to-
interference ratio (SIR) and the signal-to-distortion ratio
(SDR) based on time-domain signals. For this purpose, let
us denote the output signals in the time-domain by � ����� � �#"C��'&)&(& �*� . If the separation was ideal, they would equal fil-
tered versions of the input signals � � ��� � . We calculated the
SIR at output " by

SIR �S�6���� 
 � � 1�� � �� �#� � (1 � ��� �� ��� � (�� (16)

where � �� ��� � is the portion of �1� �#� � that comes from source
signal ��� �#� � and ��� �� �#� � ���1� ��� � B�� �� ��� � denotes the interfer-
ence from other sources.

To calculate the SDR, � �� �#� � is further decomposed into� �� �#� � ��� ���������� ��� � � ) �#� � . The reference signal �������� ��� � is
given by � ��� �� �#� �'� 1 => ;?< @ /�� �#AZ� � � �#��B5A,� , where 3 denotes the
sensor that is closest to the location of source " . The scalar� is chosen to minimize the power of ) �#� � . Then the SDR at
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Figure 6: Effect of too few clusters

output " is obtained by

SDR �2���(�! 
 �#"$% 1���& � �'�������� ��� �)( (1*� ) �#� � ( +-,. (17)

As an upper limit for the performance of the whole sys-
tem, scenario 1 in Table 2 shows the separation results when
the original mixing matrix is used. This means that the per-
mutation problem does not occur and the BSR part is given
the best possible input.

Scenario 2 gives the results if we use the estimated mix-
ing matrix without reduction of DOA variance. Scenario 3
shows the results if the estimated mixing matrix is used to-
gether with reduction of DOA variance.

Figure 4 gives an example of the clustering for Y���1�/�0� Hz and � �6�(�1� with a total of 7F� � �1� samples in each
frequency bin. To visualize the normalized samples, the real
part of the first mixture �P< versus the imaginary part of the
second mixture � ( is plotted. The � largest clusters (black)
around the normalized original mixing vectors # � (dashed)
can be clearly seen and result in precise estimations (solid).

In contrast, Fig. 6 shows the clustering which resulted
from the same conditions as Fig. 4 but a reduced number of
clusters �P����� . Reducing the number of final clusters led
to the combination of two desired clusters and eventually to
wrong estimates for two mixing vectors. However, this fig-
ure also shows, that the estimation of the remaining mixing
vector is not affected by the estimation of other vectors.

The influence of different values of the variance factor �
is depicted in Figs. 7 and 8. The solid lines in Fig. 7 give
the average SIR if the mixing matrix is estimated. Each line
shows the result for three mixed sources that were chosen
from four different speech signals. In the same way, the
dashed lines give the average SDR. The corresponding lines
are marked by the same symbol. For both SIR and SDR a
value of � 	 � and, therefore, reduced DOA variance yields
improved results.

For Fig. 8 the original mixing matrix was used instead of
the estimated mixing matrix. The depicted graphs are aver-
aged over all different mixture combinations. As expected,
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the best performance is obtained for � �-� , where the DOA
and therefore the mixing matrix remains unchanged.

Subjective evaluation of the separated sources showed
very low musical tone noise.

6. Conclusion

We proposed the application of hierarchical clustering em-
bedded into a two-stage framework of overcomplete BSS
for convolutive speech mixtures. This method can work
directly on the complex mixture samples. It also prevents
the convergence problems which can occur with SOM based
methods like GeoICA. Experimental results confirmed that
the assumption of sparseness and, therefore, clusters around
the mixing vectors is sufficiently fulfilled for convolutively
mixed speech signals in the frequency domain.
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