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A Block Exact Fast Affine Projection Algorithm
Masashi Tanaka, Shoji Makino,Member, IEEE,and Junji Kojima

Abstract—This paper describes a block (affine) projection
algorithm that has exactly the same convergence rate as the
original sample-by-sample algorithm and smaller computational
complexity than the fast affine projection algorithm. This is
achieved by 1) introducing a correction term that compensates
for the filter output difference between the sample-by-sample
projection algorithm and the straightforward block projection
algorithm, and 2) applying a fast finite impulse response (FIR)
filtering technique to compute filter outputs and to update the
filter.

We describe how to choose a pair of block lengths that gives the
longest filter length under a constraint on the total computational
complexity and processing delay. An example shows that the filter
length can be doubled if a delay of a few hundred samples is
permissible.

Index Terms—Adaptive filtering, affine projection, block exact.

I. INTRODUCTION

A DAPTIVE filtering is a key technique in applications
where the unknown system is time-varying. Among

many adaptive filter algorithms, the least-mean-square (LMS)
or the normalized LMS (NLMS) algorithms have been used
because of their relatively small computational complexity
of , where is the filter length. The shortcoming of
the LMS algorithm is that it has slow convergence rate for
colored input signal such as speech. On the other hand,
the affine projection algorithm [1], compared with the LMS
algorithm, has faster convergence rate for colored input signal
but has more computational complexity. The (computationally)
fast affine projection algorithm [2]–[5] and the fast Newton
transversal filters [6], which have a better convergence rate
for colored input signals, have almost the same computational
complexity as the LMS. Although their complexity of is
smaller than those of other adaptive filtering algorithms such
as the fast recursive least squares (fast RLS) [7] (), is
still large in some applications like acoustic echo cancellation,
where the filter length is several hundred and sometimes
several thousand. Therefore it is desirable to further reduce
computational complexity.

Block processing is an effective approach to reduce the
computational complexity and is employed in the LMS and
the affine projection algorithms [8]–[10]. However, these algo-
rithms have slower convergence rate because of less frequent
updating of the adaptive filter. In recent years, “fast exact”
block algorithms have been proposed for the LMS [11], for
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Fig. 1. Structure of adaptive filter.

the fast Newton transversal filters [12], and for the fast RLS
[13]. The fast exact block algorithms achieve less computa-
tional complexity by using fast FIR filtering techniques [14],
[15], and they have exactly the same convergence rate as
corresponding sample-by-sample algorithms.

This paper describes a fast exact version of the block
projection algorithm. The proposed algorithm introduces two
block lengths: one for computing the adaptive filter output and
the other for updating the adaptive filter. Section II explains
the projection algorithm and fast FIR filtering techniques,
Section III derives the proposed fast exact block projection
algorithm, and Section IV shows the relationship between the
output delay and the adaptive filter length.

II. PRELIMINARIES

This section gives a brief explanation of the projection
algorithm and fast FIR filtering (FFF) techniques. In the
following, nonboldfaced letters are used for scalars, boldfaced
small letters are used for vectors, and boldfaced capital letters
are used for matrices.

A. Projection Algorithm

First we define some notation using the block diagram of
an adaptive filter shown in Fig. 1. The unknown system is
assumed to be modeled as an FIR filter whose coefficients
are written as a vector , where is
the number of filter coefficients and is the transpose. The
unknown system is estimated by an adaptive FIR filter with
coefficients , where is
the discrete time index. The , , , and in
Fig. 1 are the input signal to the unknown system, the output
signal from the unknown system, the filter output, and the
error signal.

In Fig. 1, the filter output is calculated by

(1)
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where

(2)

The adaptive filter is adjusted to make the filter output
close to the unknown system output by adding an

adjustment vector .

(3)

where is a scaling factor called the step size, which controls
the convergence rate and the amount of the residual error. We
consider to be time-variant in the general case, although it
sometimes takes a constant value.

In the projection algorithm of order , the adjustment
vector is the minimum-norm solution to the following
simultaneous equations.

...

(4)

The adjustment vector is given by

(5)

where

(6)

(7)

(8)

(9)

(10)

We call a prefilter vector because it filters the row vectors
of to synthesize the adjustment vector.

The straightforward block projection algorithm is executed
every samples in the following order. ( corresponds
to the sample-by-sample algorithm.)

(11)

(12)

(13)

where

(14)

(15)

(16)

(17)

and is the floor function meaning the greatest integer not
greater than . We see two filterings with fixed coefficients:

in (13) and in (11).
Although filtering with an FFF technique reduces the compu-
tational complexity, the straightforward block processing has
less frequent updating of filter coefficients and results in slower
convergence than the sample-by-sample algorithm.

B. Fast FIR Filtering (FFF) Techniques

This subsection gives an overview of fast FIR filtering or
linear convolution algorithms based on a fast short convolution
[14], [15] and cyclic convolution methods, and also evaluates
their computational complexity. Here, we consider only FIR
filtering, which can be expressed as a matrix-vector product
(MVP) of a square Hankel (or Toeplitz) matrix and a vector
because an MVP of a rectangular matrix can always be
decomposed into MVP’s of minor square matrices.

1) FFF Based on Linear Convolution:In the usual direct
way, multiplying a square Hankel matrix consisting of four
half-dimension Hankel matrices by a vector consisting of two
half-dimension vectors needs four MVP’s of half dimension
and two vector-vector additions (VVA) as shown in the fol-
lowing:

(18)

On the other hand, according to a fast short convolution
method, (18) can be rewritten as

(19)

which needs three MVP’s of half dimension, three VVA’s, and
two matrix subtractions. The three sub-MVP’s are recursively
computed by applying (19) to themselves. Among these op-
erations, the matrix subtractions can be avoided because we
consider a data sequence and the matrix subtractions are done
when the submatrix appears for the first time. Also, when
filtering various data with a fixed coefficient vector, a VVA,
i.e., , is necessary only once at the beginning of the
filtering and can then be avoided.

To evaluate the computational complexity of MVP’s,
we count the number of multiplications, additions, and
multiplication-additions because they are the main part of
the algorithm and they each consume one clock cycle on
most DSP’s. We use MVP to represent the number
of operations to execute the MVP of dimension by FFF,
MVP to represent those executed by MVP in the
direct way, and VVA( ) to represent those executed by VVA,
where we assume the dimension . From (19), we get
a recursion for MVP

MVP MVP VVA

or (20)
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Here, we neglect the matrix subtractions and corre-
sponds to the case when the VVA can be avoided. From
(20), we get

MVP MVP

VVA (21)

where is the smallest dimension of the sub-matrices
and the MVP is done in the direct way. Considering
the relationship VVA VVA , (21) is rewritten as

MVP MVP

VVA (22)

Furthermore, by substituting the relations MVP
and VVA into (22), we get an evaluation

formula for MVP as follows:

MVP (23)

2) FFF Based on Cyclic Convolution:MVP’s can also be
computed using circular convolution, such as the fast Fourier
transform (FFT). Let be an -by- Hankel matrix defined
as

...
...

...
...

(24)

and be an -element vector. Then the MVP is computed
using the FFT in the following way:

FFT (25)

FFT (26)

the first elements of IFFT (27)

where IFFT() and denote, respectively, inverse Fourier
transform and element-by-element product. In adaptive fil-
tering, the FFT in (25) is computed when the data block
appears for the first time and either the FFT in (26) or
the IFFT in (27) is computed at every block. Assuming a
2 -point IFFT operation and an element-by-element product
require the computational complexity of and
4, respectively, MVP is evaluated as

MVP (28)

We have seen the two FFF techniques based on linear and
circular convolution. Comparing their computational complex-
ities using (23) ( and ) and (28), the technique
based on circular convolution, i.e., FFT, is more efficient when
the block length is longer than about 1024.

III. PROPOSEDBLOCK PROJECTIONALGORITHM

This section describes a fast exact block projection algo-
rithm that reduces the computational complexity by using the
FFF, and has exactly the same convergence rate as the original
sample-by-sample projection algorithm.

A. Correction of the Error from the
Sample-By-Sample Algorithm

Straightforward block processing does not have the same
convergence rate because it updates less frequently. We pro-
pose a method that corrects the error in the filter output from
the sample-by-sample algorithm.

If the coefficient vector is updated at every sample,
then , ( ) is written as

(29)

where represents the step-size weighted sum of the
prefilter coefficients for at time defined as

(30)

and the vector

(31)

is recursively obtained as

(32)

From (29), the filter output is written as

(33)

Here, the correlation defined by

(34)

can be obtained recursively [11] as

(35)

(36)
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where

(37)

The first term on the right side of (33) corresponds to the filter
output for straightforward block processing and the second
and third terms correct the error from the sample-by-sample
algorithm.

B. Introducing a Modified Filter

The third term in (33) can be eliminated by introducing a
modified filter vector

(38)

instead of the filter vector [2], [4]. From (33) and (38),
the filter output is rewritten as

(39)

where

(40)

For the block length , (39) ( ) is written
in matrix form.

... (41)

The updating formula for the vector can be derived in
the following way. First, in (38), by replacing by ,
we get

(42)

Then, by substituting (38) and (42) into (29) ( ), the
updating formula for the vector is derived:

(43)

In matrix form:

(44)

where denotes a sub-vector consisting of the- through
th elements of .

C. Application of FFF to the Projection Algorithm

The following two filterings in the projection algorithm can
be computed by the FFF, as follows.

• in (41)
• in (44).

Here, is the block length for computing the filter output
and is the block length for updating the filter. We assume
here that each is a factor of the filter length, i.e., ,
( ) ( are positive integers) and that one of the block
lengths is a multiple of the other.

The former filtering is executed every samples and
consists of MVP’s of dimension as follows. (For
practical implementation of the FFF, see [11] or [14].)

(45)

where represents an -by- matrix and rep-
resents an -element vector defined, respectively, as

...
...

...

(46)

(47)

Computational complexity for the above filtering is evaluated
as MVP . Similarly, the latter filtering executed every

samples can be rewritten as

...
...

(48)

Here, the second term on the right side consists of
MVP .

In addition to the MVP’s, the matrix subtractions shown in
Section II-B-1 need and operations.
Summing these numbers gives the total computational com-
plexity for the two filterings as MVP

MVP per sample.

D. Complexity Comparison with Other Block Exact Algorithms

All of the procedures for the fast exact projection algorithm
are listed in Fig. 5. The algorithm consists of three parts: 1) the
filtering part that generates the filter output by using the FFF
(1 in Fig. 5); 2) the correction part that recursively computes
the correction term and adds it to the filter output obtained
in the filtering part to make the filter output exactly the same
as that of the sample-by-sample projection algorithm (2–7 in
Fig. 5); and 3) the filter updating part that updates the filter by
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TABLE I
COMPARISON OF THECOMPUTATIONAL COMPLEXITIES PER SAMPLE AMONG VARIOUS ALGORITHMS

using the FFF (8 in Fig. 5). Computational complexities per
sample for the three parts are evaluated as follows.

• Filtering Part (1 in Fig. 5)
This part generates the filter output by using the FFF.

Computational complexity per sample for this part is
evaluated as

MVP (49)

• Correction Part (2–7 in Fig. 5)
This part recursively computes the correction term

and adds it to the filter output obtained in the filtering
part to make the filter output exactly the same as that
of the sample-by-sample projection algorithm. If the
prefilter is updated using the fast transversal filters
(FTF) algorithm [3], [4] with computational complexity

, then computational complexity per sample for the
correction part is evaluated as

(50)

• Filter Updating Part (8 in Fig. 5)
This part updates the filter by using the FFF. Compu-

tational complexity per sample for this part is evaluated
as

MVP (51)

Total computational complexity for the proposed algorithm
is

MVP

MVP (52)

Table I compares the computational complexity of the pro-
posed block exact fast affine projection algorithm
with that of sample-by-sample affine projection algorithm

, the fast exact LMS algorithm , block exact
fast Newton transversal filtering algorithm , and the
fast subsampled-updating RLS . We use the follow-
ing equations to approximately evaluate the computational

Fig. 2. MSE curves for the straightforward block, sample-by-sample, and
proposed exact block projection algorithms (average of 50 trials). Experimen-
tal conditions: filter lengthL = 1024, projection orderp = 8, block lengths
N1 = N2 = 8, step sizes� = 0:5 for the sample-by-sample and proposed
projection algorithms,� = 1 for the straightforward block projection, noise
level �40 dB, input signal is speech.

complexities:

(53)

MVP (54)

MVP

MVP (55)

MVP (56)

Here, is used in (52), (53), and (55) and
is used in (52). In computing MVP by (23),
and are used. Table I evaluates (52)–(56) for various
filter lengths and block lengths . We can see that the
proposed algorithm saves more than 50% of computation
compared with the sample-by-sample FAP for
and that it has computational complexity comparable to the
FELMS algorithm, which is smaller than the other block exact
algorithms BEFNTF and FSU-RLS.

E. Comparison of Convergence Curves with the
Conventional Projection Algorithms

This section compares convergence curves for the original
sample-by-sample projection algorithm, the straightforward
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Fig. 3. Order of execution and filter output delayD.

Fig. 4. Filter length versus delay for various pairs of block lengthsN1 and
N2. Total computational complexityCT = 2160, projection orderp = 8.

block projection algorithm, and the proposed fast exact block
projection algorithm. Experiments were carried out by com-
puter simulation for acoustic echo cancellation. The unknown
system was the acoustic path from the loudspeaker to the
microphone. The experimental conditions were as follows:
length of the true acoustic impulse responseand that of the
adaptive filter were both , projection order ,
block lengths were , and the input signal was
speech sampled at 8 kHz with bandpass filter 0.3–3.4 kHz.
White noise was added at the microphone at a level of40
dB relative to the average speech level. The performance of the

adaptive filter (echo canceler) is indexed by the mean squared
error (MSE) defined as

MSE dB (57)

Fig. 2 shows the results of the computer simulation in which
MSE curves for the three projection algorithms were drawn.
The impulse response is changed at 1 s. Curves 1, 2, and 3
each shows the average of 50 trials. They show the behavior of
MSE for the original sample-by-sample projection algorithm,
the proposed fast exact block projection algorithm, and the
straightforward block projection algorithm. Curves 1 and 2
are identical. This verifies that the proposed fast exact block
projection algorithm has exactly the same convergence rate
as the original sample-by-sample projection algorithm. We
also see that the fast exact block projection algorithm has
faster convergence than the straightforward block projection
algorithm.

IV. CHOICE OF BLOCK LENGTH

In designing an adaptive filter using the proposed algorithm,
we need to find a pair of block lengths and that satisfies
certain requirements for both the delay and the computational
complexity and also give the longest adaptive filter length. This
section shows the relationship between the output delay and
the computational complexity of the fast exact block projection
algorithm in terms of the two block lengths.

• Filter Length: If the computational complexity per sample
is constant, then by rearranging (52), we get the relation-
ship between the filter length and the block lengths
and as

MVP MVP
(58)

• Delay: The input signal at the beginning of a filtering
part has the longest wait to be filtered. Then the output
corresponding to the input is computed immediately as
the correction part right after the next filtering part begins.
Thus, the maximum output delay can be evaluated as the
longest period from one filtering part to the end of the
next filtering part. Fig. 3 illustrates the maximum filter
output delay for two cases, i.e., and .
We see that the filter output is delayed by

.
(59)

The coefficient represents the ratio of time consumed
by the correction section just before the update section
to the total correction sections within the block and is
evaluated as

(60)
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Fig. 5 Block exact fast affine projection algorithm (N1 � N2).

Using (58) and (59), for various pairs of block lengths
and , we can plot the relationship between the delay and
the filter length and then determine the pair of block lengths
that gives the longest filter length for a given delay. Fig. 4
gives an example of the relationship between the delay and
the filter length, where total complexity and the
projection order is assumed. Here, we see that the filter
length can be 20% longer than the conventional sample-by-
sample projection algorithm with a delay of about 16 samples
when pair of the block lengths is and that,
if a delay of a few hundred samples is permissible, the pair

can double the filter length compared
with the sample-by-sample fast projection algorithm.

V. CONCLUSIONS

We have developed a fast exact block projection algorithm
that overcomes the degradation in convergence rate seen in
the straightforward block projection algorithm, and has exactly
the same convergence rate as the original sample-by-sample
projection algorithm. This is achieved by 1) introducing a
correction term that compensates for the filter output difference
between the sample-by-sample projection algorithm and the
straightforward block projection algorithm, and 2) applying a
fast FIR filtering technique for computing filter outputs and
updating the filter. We also described how to choose a pair of
block lengths that gives the longest filter length where the total
computational complexity is constrained. An example showed
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that the filter length can be doubled if a delay of a few hundred
samples is permissible.
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