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Abstract

This paper provides a fast Projection algorithm and a step
size control to obtain the same steady-state excess mean
squared error (MSE) for various projection orders. Com-
puter simulations for colored noise and speech input signal
confirm the effectiveness of the Projection algorithm and
the step size control.

1. Introduction

Of the many adaptive filtering algorithms, the Normalized
LMS (NLMS) algorithm is generally used in practice
because of its simplicity. The computational complexity of
the NLMS algorithm is low, however, convergence is very
slow and tracking is poor for a colored input signal such as
speech.

The RLS (Recursive Least Squares) algorithm, on the
other hand, has the same convergence speed for both a col-
ored input signal and a white signal, but its large computa-
tional complexity is a drawback.

In recent years, an algorithm called Projection (or Affine
Projection) {1] has been drawing attention. This algorithm
has properties that lie between those of the NLMS and RLS,

i.e. less computational complexity than RLS but much

faster convergence than NLMS for an input signal such as
speech which can be modeled as a low-order AR process.
The Projection algorithm, however, still needed more com-
putation than NLMS, which was a problem.

Recently, efforts to reduce the amount of computation
have been made [2] [3] [4], and computational complexity
has been significantly reduced. This paper describes the fast
Projection algorithm and proposes a control method for
so-called step size parameter to obtain the same steady-state
excess MSE for various projection orders.
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2. Fast Projection Algorithm
2.1 Projection Algorithm

The Projection algorithm was proposed as a generalization
of the NLMS algorithm [1]. A block diagram of the con-
ventional Projection algorithm is shown in Fig. 1, where
x (k) represents an input signal, y (k) a desired signal,

¥ (k) estimation value, e (k) an estimation error, h (k) an

FIR filter coefficient vector, and g (k) decorrelation FIR

filter vector.
" The projection algorithm consists of four parts: decorre-
lation of the input data sequence, calculation of the decor-

relation filter coefficients, convolution of x (k) and h (k)

to generate (k) , and adjustment of the filter h (k) using

the decorrelated input signal as in the following equation.
h(k+1) = h(h) +pWX K gK). (1)
Here, X (k) is a L X p matrix defined as

Xk =[x, (), x, (k=1),...,x, (k=p+1)] (D)

X, (k) = [x(k),x(k—1),..,x(k—L+ 1)]T. 3)
u(k), p,and L denote the step size, the projection order,
and the length of the filter h (k). The decorrelatioﬁ filter
vector g (k) is calculated as
g(k) = (R+3D) e (k). @
Here,
R(K) = X(0)'X (%) ®
e(k) = [y(k),y(k=1), .,y (k-p+ 1)1
X®RW g
and 8 denotes a small positive number for initializing and
regularizing the covariance matrix R (k).

Updating the filter coefficients vector h (k) requires

(p—1)L computational complexity for decorrelation,
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O p3) for calculation of the decorrelation filter, and 2L for

filter adjustment and convolution.
2.2 Fast Projection Algorithm

We omit the detailed derivation of the fast algorithm but
only list its processes in List 1. The reduction of computa-
tional complexity is achieved by the recursive update of the

decorrelation filter vector g (k) [3] [4] (6 and 7 in List 1)
and the employment of a filter z (k) an approximation of
hi (k) [2]14] [6)(2and9inList 1). InList 1, a (k) denotes
the forward linear prediction filter, b (k) the backward lin-
ear prediction filter, ¥ (k) the minimum value of the sum

of forward a posteriori prediction-error squares, and B (k)

the minimum value of the sum of backward a posteriori pre-
diction-error squares.

The computational complexity is compared with that of
other conventional algorithms in Table 1.

Table 1: comparison of computational complexity
(L: filter length, p: projection order)

Conventional Projection (p+ 1)L+ 0O (p3)

Fast Projection 2L +20p
NLMS 2L
Fast RLS 8L

3. Step Size Control

In the Projection algorithm, the relationship between step
size and the steady-state excess MSE depends on the pro-
jection order. A step size that brings about some steady-s-
tate excess MSE for one projection order does not yield the
same steady-state excess MSE for different projection
arders. This makes choosing a step size very troublesome.
To overcome this problem, we propose a time varying step
size, which is controlled using the sum of prediction error
squares F (k).

Let us write the optimum value for the estimated impulse
response as ho, then the desired signal y (k) is decom-

posed into a response of the optimum filter and an additive

noise n (k) as follows,

y(ky =%, () h,+n(k) . )
By substituting Eqs. (4), (6) and (7) to Eq. (1), we get,

List 1: fast Projection Algorithm

Subscripts of vectors represent the number of elements.
(k) is whether a constant value or controlled as stated in Sec. 3.

0. Initialization
r_, (0
.
= [x,(0)x, (=10, x(0) X (=2) ;, ... X (0) %, (=p + 1) |
e, (0) =0,f _(0) =5 _ (0)=0

F(0) = B(0) =3, zL(O):arbitrary

Start with k=1.
1. rp_](k) = rp_](k—1)+x(k)xp_!(k-l)

—x(k=L)x, _ (k=L-1)

2. P =x, W5+ ®s k-1

3. elk) =yl -3(k)
e (k)

4, ep(k) =
) « | (1-u(k=1)e (k-1)| »:dontcare

5. Compute ap(k), bp(k), F(k), and B (k) by

the sliding window version of FTF [5]

0
k) = (I1-p(k—-1
6. 8,0 = (1-u( ))[f (k_l)}

p-1
T
a (k) e, (k)

+ hF(k)—aP (k)

T
7 [P“( )J =g, () ————"—b (k)

0 B (k)
k 0
O A +u g, (k)
s (k) S,_ (k=1)
9. zL(k+1) = zL(k)+s(k)xL(k~p+l)

A(k+1) :fl(k)—ho
= (I-p)PKk))A (k)

FROXORMD nKh) g

where
P(k) = X(ORK) Xk )
Nk = [n(k),n(k=1), ...onk-p)1'.  (10)

The second term on the right side of Eq. (&) disturbs the
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convergence of h (k) to h . lts square norm Npis csti-
mated as

N
»

z;mwk)xu)R(k)"n (k) fﬂ

p(k)zpF(k)"oi

Q

.. SN -1
CRG T EFGT

2 . - .
where 67 represents the variance of n (k) which we
n

assume as white noise. As is known, for NLMS with white
noisc input, from Eqgs. (8) and (11), steady-state excess
MSE is estimated as
S (122
MSE~E [HA | 0.‘]
~ Ii[A(.k)IP(k)A(k)oﬂ
N 02

p=1"x
Cw2ep) 2-p)

CENAOI = Elak+ 1) 1P
E[P(k)] =1 ,

2
ulCFn

(12)

where oz represents L times of the variance of x (k) , and
M, aconstant step size for NLMS.

We experimentally found that steady-state excess MSEs
for p>1 coincides if step size (k) is controlled so that

the following relationship holds.

e 2 2
W (k)po: no
= (13)
(2-p (k) (2-n)
wk) = 2ﬁfF(k)‘IOi u (k) (14)
The left side of Eg. (13) is equal to

E[A(k)TP(k)A(k)oﬂ when the input signal is

/F(k)_loi x(k) and the step size is replaced with

wk) = 2f;(k)"’o§ 1 (k) . Solving Eq. (13), we get a
time varying step size p (k) .

b

wk) = 1
IF ()" o2 ((2-p)p+m)

With this step size control method, the same steady-state

(135)

excess MSE can be achieved for various projection orders.

4. Experimental Results

Figures 2 (a), (b), and (c) show convergence curves for the
Projection algorithm, and NLMS(p = 1). The experimen-
tal conditions of this computer simulations are: filter length
L = 100 and the true impulse response is also 100. the
power level of additive noise is —40 dB relative to the aver-
age power of y (k). The step sizes and input signals are:

(a) Bo= 0.25, colored noise generated through an &-order

IR filter of x (k) = 37 (=)' (i/10)x (k-9+1):
(b) Bo= 0.5, colored noise generated through a 4-order

IIR filter of x(k) = 0.95x(k—1)+0.19x (k-2) +
0.09x(k-3) —0.5x (k—4); and
(c) B o= 0.5, speech signal.

The frequency-amplitude characteristics of the two IIR fil-
ters in conditions (a) and (b) are shown in Fig. 3.

From the Figs. 2 (a), (b), and (¢), we can see that the Pro-
jection algorithm improves the convergence speed as the
projection order p increases. This improvement can be
achieved with additional computational complexity of 20p.
Also we can see that the steady-state excess MSEs for var-
ious projection orders coincide, excluding p = 1 in (b) and

(c). These results confirm the effectiveness of the Projec-
tion algorithm and the step size control.

5. Summary

This paper reported a fast version of a Projection algorithm
whose computational complexity is 2L + 20p (L is the filter

length and p is the projection order), which is much smaller

than the (p+1)L+ 0O (p3) of the conventional algorithm

and is comparable to NLMS of 2L. We also described a step
size control method that gives the same steady-state excess
MSE for different projection orders. Experimental results
showed the effectiveness of the Projection algorithm and
the step size control.
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Figure 1. Block diagram of conventional
Projection algorithm
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Figure 3 Frequency characteristics of two IIR filters
(a) 8-order IIR filter (b) 4-order IIR filter.
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(a) for a colored noise generated through an §8-order IIR filter,
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(b) for a colored noise generated through a 4-order IIR filter,
Bo= 0.5.
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(c) for a speech signal, averaged 50 trials, no= 0.5

Figure 2. Convergence curves for various projection orders
filter length L = 100, S/N=-40 dB.
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