93T F B F1H WA E

FEREXE

TA=2-2

Block Fast Projection Algorithm with Independent Block Sizes

Tanaka Masashi, Shoji Makino, Junji Kojima
NTT Human Interface Laboratories

1. Introduction

Block processing is an effective approach for reducing the
computational complexity of adaptive filtering algorithms
although it delays the adaptive filter output and degrades the
convergence rate in some implementations.

Recently, Benesty[1] proposed a solution to the problems.
He introduced the idea of ‘exact’ block processing which
produces the filter output exactly the same as that of the
corresponding sample-by-sample algorithm and has short
delay by facilitating the fast FIR filtering method.

Block processing can be applied to two parts of the
adaptive filtering algorithms, i.e. computing the filter output
and updating the filter. Conventional ‘exact’ block
algorithms have been using the identical block size for the
two parts.

This short paper presents the ‘exact’ block projection
algorithm [2] having two independent block sizes, which is
listed in List 1. We see, by showing the relation between the
filter length and the output delay for a given computation
power, that the independent block sizes extend the
availability of the ‘exact’ block fast projection algorithm
toward use with longer delay.

Filter len l

In practice, we are interested in the filter lengths and the
output delays under a given computation power. To represent
the filter length and the delay in terms of computational
complexity, which we define by the number of additions and
multiply-and-add operations, we estimate the computational
complexity of the ‘exact’ block fast projection algorithm.

* computational complexity

The ‘exact’ block algorithm consists of three phases, i.e.
computing filter output, correcting the filter output, and
updating the adaptive filter, whose computational
complexity are estimated as follows.

For output: (proc. in List 1)

T, = MVP (N|) (L/N,) +N,log,N, per N, samples (1)
For correction: (procs. 2 to 7 in List 1)

T, = N,(2.5N,+20p) per N, samples
For updating: (proc. 8 in List 1)

T, = MVP (N,) (L/N,) + N,log,N, per N, samples (3)
Here, N, and N, denote the block sizes for computing the
filter output and updating the filter, respectively and are
assumed to be powers of two here. p denotes the projection
order. MVP(N) means the computational complexity
necessary for a matrix and vector product (MVP) of
dimension N. MVPs are done using either the fast FIR
filtering (FFF) method as done in [1] or the fast Fourier

2

transform (FFT) and estimated as

N(3(3/2)%" _1) for FFF
MVP (N) = { @
8Mog:N' for FFT
FFT is more efficient with the block size N 2 512.
« filter length

Computational complexity per sample instance is given
by summingup T,, T, and T, as
T =T,/N,+T./N,+T,/N,
=MVP (N,) (L/N?) + (2.5N,+20p) .
+MVP (N,) (L/N3)
Solving this equation with respect to the filter length L, we
get

(5)

5 T-2.5N,-20p
MVP (N,) /N? + MVP (N,) /N2
As noted in [1], for N, = N,, there exists a block size N

(6)

that gives the longest filter length. By differentiating InL
with respect to N, and N,, and then setting it to be zero, we
obtain the block size Ny as
Ny = 0.12(T-20p) .)]

* delay

Fig.1 illustrates the maximum filter output delay for two
cases, i.e. N, >N, and N, < N,. We see that the filter output
is delayed by

N +T,/T N >N,

o . ®
(2T,+T . +T,)/T N, <N,
The delay corresponding to N, is given approximately from

(1)-(3), (6) and (7) as
Dy = 0.12(T-20p),
which is coincidentally the same value as Ny in (7).

3. Numerical example

Substituting various pairs of the block sizes N, and N,
into (6) and (8), we can draw the relationship between the
delay and the filter length under a fixed computational
complexity T. Fig. 2 shows an example of the relationship.
The conditions are: the computational complexity per one
sample instance T = 2000 and the projection order p = 2.
The solid line connects the equal-block-size conditions.
According to (9), we have D, = 235, which is indicated by

the vertical dotted line.

9

554

139 7B #EE

P

Aty
=

__’,_A-

Fy

Lo
a

vy
i

X

For delay longer than D, pairs of N, >N, can give
longer filter length than N, = N,. For example, for the
delay near 512 samples, the (N}, N;) =(512, 512) has the
filter length of about 1500, while the (N, N,) =(256, 128

) achieves the filter length about 2900, which is almost
twice as longer than the equal-block-size case.

4. Conclusions

Employing independent block sizes in the ‘exact’ block
fast projection algorithm allows options of longer delay
but more reduction in computational complexity than the
equal-block-size version. Long delay in adaptive filter may
be permissible in applications where delays due to factors
such as (de)coding and transmitting are unavoidable and
dominant.

References

[1] J. Benesty and P. Duhamel: “A fast exact least mean
square adaptive algorithm,” IEEE Trans. on Signal
Processing, vol. 40, no.12, pp. 2904-2920, (1992-12)
[2] M. Tanaka, et al.: “Projection algorithm using fast FIR
filtering techniques,” IEICE fall conf., p. A-79, (1995-9)

time—>-
////)’

TT

TR

pzzz

execution;
time *T

o’ '.’.’c'o'.'.’.’.“'..h"‘

T./2

o

4— N, samples ——-p- '
de[ay "<__'— N +T/T _"‘"‘"""""'

List 1: projection algorithm with exact block processing
Notations:
k : time index, x(k) : input signal, y(k) : desired signal
e(k) : error signal, L : filter length, p : projection order
N, N, : block sizes
h., (k) : adaptive filter coefficient vector
(Subscripts denote the dimension of vectors)
= [x(k),..x(k=L+1)]7

intermediate vector updated in stead of h; (k) and

x; (k) :
z, (k) .
defined as

2, (k) = B (k) - ,,, S,

sP:Sec proc. 6. s, (k=1); is the i-th element of s, (k=1)

(k=1) xL(k—:)

&0 = [e(h), ... (1-wP 'ek-p+1)}
W : step size (0Sp<2)
g, (k) : the solution of R, (k) g, (k) = e, (k)

R, (k) covariance matrix of dimension p defined as

Rp(k) = (k—-x)x (k-——l)

i= 0 P
Fpey=1 (k) :autocorrelation of x (k) , from 1-stto

p+N,— 1-th order.

0. initialization

k, = ky, = max (N|,N,),n, =0

r (ky=1), = x} (k= 1=i)x, (k= 1)
. i =118 = 1) = X UKy AL
Gy o Ty e D0) (i=1,..,p+N,-2) H : conjugate transposition
R R 2% S e - p sp(kl B 1) = ep(kl— l) = Ep(kl - l) ol
time *T k| 4 Tog Tc iT, iT, Begin at k, and repeat 1 to 8.
R N, safnples ity 1.If k; mod N, = 0, then compute
delay <4—(2T,+T.+T,) /T Y (kg +i) = zf("‘zJ";_(kl) (oo By =3,
(b) N, <N, (when N,:N, =1:2) 2. Tpewp-alk) =1y (kg =1)
Fig. 1 Filter output delay +x(ky) Xy oy, -2 (k) = 1) (K - L) ip+N1-?U‘l =&=1)
: output & : correction N : update - : complex conjugate
it ‘ ' - 3. e(k) =y(k) =7 (k) - P,,,,_l{k = 1)E I_l(kl)
Z N2=1362 = a [ep(kl):| " I: e (k) } *: don’t care
d o 64 E....E..%?OO . (1-we, (k= 1)
= o 128 s f 5. SolveR_ (k,)e, (k) = g (k).
Za000F X 256 A+ 3 pitdg h) = Rk
=2 * 512 + k
= A 500 6 s, (k) = i + M8 (k0
- o ¥ P+, 85 00,1 Uiy =1) 0,
sk
0 7. Increase indexes &k, = k;+1,n, = n,+ 1.
: ¢ a0 B T e 8.If k, mod N, = 0 then update z.
Output delay D (sample)

Fig. 2 An example of the relation between the output
delay and the filter length.
T=2000, p=2, N,=4, 8, 16, 32, 64, 128, 256, 512,1024

from the left for each N,.

555

z, (ky +N,) = 2, (ky) + [x (kg +Ny=p), ...,
5N1+p—1(k2+N2"1)

X, (ky—p+1)]
p=Ny+p-1

(p-thto N, + p — 1-th elements)

ky = ky+Nyn, =0

