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Abstract—The aim of the presented study is to provide a
comprehensive test of the EEG evoked response potential (ERP)
feature selection techniques for the spatial auditory BCI–speller
paradigm, which creates a novel communication option for
paralyzed subjects or body–able individuals requiring a direct
brain–computer interfacing application. For rigor, the study is
conducted with 16 BCI–naive healthy subjects in an experimental
setup based on five Japanese hiragana characters in an offline
processing mode. In our previous studies the spatial auditory
stimuli related P300 responses resulted with encouragingly sep-
arable target vs. non-target latencies in averaged responses, yet
that finding was not well reproduced in the online BCI single
trial based settings. We present the case study indicating that the
auditory spatial unimodal paradigm classification accuracy can
be enhanced with an AUC based feature selection approach, as
far as BCI-naive healthy subjects are concerned.

I. INTRODUCTION

Contemporary brain–computer interface (BCI) paradigms
rely mostly on unimodal approaches [1] with still not fully
satisfactory online interfacing accuracy results. The recently
proposed solutions enhance the existing paradigms by adding
spatial stimuli variability [2], [3], [4], [5] in order to aug-
ment the brain–computer interfacing comfort or to boost the
information-transfer-rate (ITR) achieved by the users in real–
time.

We enhance classification accuracy of the previously pub-
lished by the authors [6], [7] simple five Japanese hiragana
characters (a,i,u,e,o) auditory spatial speller task in order to
boost interfacing accuracy variability and users’ subjective
comfort. The concept is tested with 16 BCI–naive subjects
in an offline BCI processing mode. In order to do so, we
design the auditory task with synthetic vowel representations
originating from the five spatial directions using a vector
based amplitude panning (VBAP) [8] technique. Next we
propose a new evoked response potential (ERP) feature selec-
tion technique based on the area under the curve (AUC) [9]
distributions separability test. We compare the results with the
classical coefficient of determination based methods [10].

The paper is organized as follows. In the next section
we introduce BCI psychophysical and EEG experimental pro-

1The corresponding author.

Fig. 1. The auditory spatial BCI–speller paradigm realized with VBAP
technique [8].

tocols. After that results of the experiments are discussed
together with the proposed ERP feature selection enhancement
technique. Discussion and future research directions concluded
the paper.

II. METHODS

In the experiments reported in this paper, 16 healthy BCI–
naive subjects took part (mean age 21.81, standard deviation of
0.75). All the experiments were performed in the Life Science
Center of TARA, University of Tsukuba, Japan. The online
EEG BCI experiments were conducted in accordance with
WMA Declaration of Helsinki - Ethical Principles for Medical
Research Involving Human Subjects. The subjects performed
the experiments with monetary gratification.

The 200 ms long spatial unimodal auditory stimuli were
presented from five distinct spatial locations. We designed a
VBAP [8] application that positions virtual sound images at
spatial locations positioned at −90◦,−45◦, 0◦, 45◦, and 90◦

in respect to the front of the subject head as depicted in
Figure 1. Each subject first conducted a short psychophysical
test with a button press response to confirm understanding of
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Fig. 2. Results of the psychophysical experiment in a form of boxplots with
averaged response delays from the 16 subjects for each auditory spatial letter
separately. The “hiragana” spatial stimulus letters (a, i, u, e, o) are represented
by the numbers (1, 2, 3, 4, 5) in the figure.

the experimental setup. During the online BCI experiments,
the EEG signals were captured with a 16 active electrodes
EEG amplifier system g.USBamp by g.tec. The electrodes
were attached to the following head locations Cz, CPz,
POz, Pz, P1, P2, C3, C4, O1, O2, T7, T8, P3, P4, F3,
and F4, as in the 10/10 extended international system [11]
(see topographic plots in Figures 4 and 6). The ground and
reference electrodes were attached at FCz and the left earlobe
respectively. The recorded EEG signals were processed by the
in-house enhanced BCI2000 application using an SWLDA
classifier with features drawn from 0− 600 ms ERP intervals.
The sampling frequency was set to 512 Hz, a high pass filter at
0.1 Hz, the low pass filter at 100 Hz, with an electric power line
interference notch filter set in a band 48 − 52 Hz. An inter–
stimulus–interval (ISI) was set to 500 ms and each stimuli
had length of 200 ms. The subject was instructed to spell five
hiragana letters random sequences as in a classical P300 based
oddball paradigm [1]. Each target was presented ten times in
a single spelling trial and the averages of ten ERPs were later
used for the classification in order to make the experiment
easier for novices.

In this paper we report the off–line postprocessing of the
EEG data in order to enhance the classification results by the
new AUC–based feature extraction method.

III. RESULTS

The averaged results of the spatial auditory psychophysical
experiments conducted with the 16 subjects are summarized in

TABLE I. SPATIAL AUDIO BCI–SPELLER CLASSIFICATION ACCURACY
IMPROVEMENT WITH THE PROPOSED AUC–BASED ERP FEATURE

SELECTION (NaN - STANDS FOR NOT–A–NUMBER WHEN IT WAS NOT
POSSIBLE TO TRAIN THE CLASSIFIER). THE CLASSICAL SWLDA

CLASSIFIER WAS APPLIED IN THE SAME CONFIGURATION FOR THE TWO
FEATURE SELECTION CASES. THE TEN ERP AVERAGES METHOD [1], [10]

WAS USED IN ORDER TO ENHANCE THE EEG FEATURES FROM THE
BCI–NAIVE SUBJECTS. PLEASE NOTE, THAT WHILE IN SIX CASES THE

PROPOSED ERP FEATURE EXTRACTION METHOD DID NOT IMPROVE THE
RESULTS, THERE WAS NO CASE OF A RESULT DECREASE.

Subject r2–based accuracy AUC–based accuracy Improvement
#1 100% 100% 0%
#2 40% 80% 40%
#3 40% 80% 40%
#4 20% 20% 0%
#5 20% 20% 0%
#6 60% 60% 0%
#7 80% 80% 0%
#8 20% 80% 60%
#9 20% 60% 40%
#10 40% 60% 20%
#11 40% 60% 20%
#12 80% 80% 0%
#13 40% 80% 40%
#14 0% 60% 60%
#15 0% 60% 60%
#16 0% 20% 20%

the Figure 2 confirming the experimental hypothesis that all
the chosen sound location stimuli had the same cognitive loads
resulting with the equal behavioral time response results (no
significant differences as tested with the pairwise Wilcoxon–
test).

The averaged EEG ERP responses from the same 16 BCI–
naive subjects are reported in Figure 3 and for a single subject
with the best accuracy boost with the proposed method (see
Table I) in Figure 5. The P300 response is clearly depicted
in the target averages in the range of 400 − 500 ms in
case of all subject averages. The results of r2 versus AUC
scores comparison depicted in Figure 4 and even with stronger
effect of the single subject results in Figure 6 confirm the
superiority of the second method (AUC) for the successful
feature selection.

The resulting classification enhancement using a standard
SWLDA classifier (the same configuration for the both r2 and
AUC based features) is reported in Table I. For the majority of
subjects performing spatial auditory BCI–speller task the AUC
based ERP features resulted in classification accuracy boosts.
Only six out of sixteen subject results remained unchanged.
None of the results suffered accuracy decrease. The single
subject #15 results are plotted in Figure 5 separately since
this has been the most difficult case resulting with the best
improvement of 60%. Figures 5 and 6 clearly show the superior
of AUC based features since they were not drawn from the
region of 400 − 600 ms which that particular subject had
somehow more active for the both targets and non–targets.
The r2 based measure unfortunately identified this region (see
middle panel of the Figure 6) as “a potentially separable.”

IV. CONCLUSIONS

In the paper we reported the results obtained with AUC–
based EEG ERP feature selection technique which turned
out superior comparing with the traditional r2 based method.
AUC–based EEG ERP feature extraction is the data–driven
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Fig. 3. EEG ERP averaged responses of the 16 BCI–naive subjects to targets
in the upper panel and non–targets in the lower one. P300 response is easy
to identify in the range of 300 − 600 ms. The associated head topographic
plots, r2 and AUC results are depicted in Figure 4.

approach without assumptions on data distribution, which
apparently results with longer latencies leading to improved
classification results.

The obtained results allowed for the boost up to 60% of the
offline BCI mode classification results in the five–commands
spatial auditory paradigm as reported in the Table I.

The presented preliminary, yet encouraging results, call for
more research on spatial auditory BCI paradigms. The next
research steps will include the spatial auditory stimulus opti-
mization for handicapped or bedridden subjects, who cannot
utilize the fully surround acoustic environment.

We plan to continue this research in order to apply the
method in online BCI application for those patients suf-
fering amyotrophic–lateral–sclerosis (ALS), also known as
Lou Gehrig’s disease, or totally–locked–in–syndrome (TLS)
to create a new communication possibility for such users in
need.
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Fig. 4. The results of the 16 subjects averaged r2 versus AUC based ERP
feature selection in form of respective topographic plots in the top panels.
Time series of r2 (middle panel) and AUC (bottom panel) scores are also
depicted.
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