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Abstract

We present a concept and a pilot study of a two-step input speller application combined with a spatial auditory brain-computer

interface (BCI) for locked-in syndrome (LIS) users. The application has been developed for 25 Japanese syllabary (hiragana)

characters using a two-step input procedure, in order to create an easy-to-use BCI-speller interface. In the proposed procedure, the

user first selects the representative letter of a subset, defining the second step. In the second step, the final choice is made. At each

interfacing step, the user’s intentional choices are classified based on the P300 event related potential (ERP) responses captured in

the EEG, as in the classic oddball paradigm. The BCI experiment and EEG results of the pilot study confirm the effectiveness of

the proposed spelling method.
c© 2014 The Authors. Published by Elsevier Ltd.
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1. Introduction

A brain-computer interface (BCI) is a technology that uses brain activities to control a computer, or a machine,

without any body muscle movements [1]. This technology could allow disabled people, such as those suffering from

locked-in syndrome (LIS), to regain communication skills or to manage daily life support related functions. There

are several types of BCI based on the brain signal modalities utilized. In our research, we focus on an auditory and

non-invasive BCI modality, since it allows application requiring no training even for the naive user [2]. A diagram

depicting the most popular BCI modalities is presented in Figure 1 (reproduced with permission from [3]). Non-

invasive BCIs are the safest because the brainwave sensors are usually attached to the surface of the human head.

These modalities usually demonstrate lower signal quality due to a very poor signal-to-noise ratio compared to invasive

systems requiring potentially dangerous surgical interventions. Non-invasive BCIs are divided into stimulus-driven

BCIs and imagery BCIs, as shown in Figure 1. Stimulus-driven BCIs provide interactive interfacing solutions in which
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Fig. 1. A tree diagram depicting the most common types of BCI. In the stimulus-driven BCI branch, spatial auditory, visual, and tactile modalities

have recently been successfully applied in various neurotechnology applications [2,4,5].

the commands to operate a computer or an application are associated with sensory stimuli delivered to the user. The

user generates a signature brainwave captured by electroencephalography (EEG) by focusing attention on (the target)
or by ignoring (the non-target) randomly presented sensory stimuli. Attention focused on randomly presented targets
in a sequence of non-targets evokes a specific event related potential (ERP) pattern called the “aha” or P300 response

(see results in Figure 4, in Section 4, where averaged brainwaves are depicted), since it is a positive brainwave EEG

signal deflection starting 300 ms after a stimulus onset [1].

Among recently developed BCIs, the visual modality is the most successful because the evoked P300 responses

usually have the largest amplitudes allowing for the easiest classification [2]. However, it is known that some LIS

users (e.g. advanced stage amyotrophic lateral sclerosis patients) cannot use visual modalities because they gradually

lose intentional muscle control, including eye movements, focusing or intentional blinking. Our research hypothesis

is that the auditory modality BCI shall be a more suitable solution for establishing communication with LIS users.

Previously our research group already proposed an auditory BCI-speller application with spatial sounds generated

through a vector based amplitude panning approach and delivered to the user via headphones [2,6]. In the research

project reported in this paper, we aim to expand the spatial auditory BCI speller in order to test the possibility of

inputting a larger set of Japanese syllabary characters. We propose to utilize the two-step input procedure in order to

create an easy-to-use interface with limited numbers of choices (commands) in each step. We report results from a

series of experiments in which the users were asked to spell short Japanese words using the two-step input scenario,

as illustrated in Figure 2.

The remainder of the paper is organized as follows. In the next section, we describe the online BCI experiment

set-up, EEG signal acquisition, pre-processing and classification procedures, as well as the two-step input Japanese

syllabary speller paradigm. Then the results of the online BCI experiments are discussed, together with the ERPs, and

especially the P300 response latencies. Finally, conclusions are drawn and future research directions outlined.

2. Materials and Methods

In the experiments reported in this paper, five healthy users took part (mean age of 27.2 years old, standard deviation

(SD) of 9.5 years). All the experiments were performed at the Life Science Center of TARA, University of Tsukuba,

Japan (experimental permission no. 2013R7). The online (real-time) EEG experiments were conducted in accordance

with the WMA Declaration of Helsinki - Ethical Principles for Medical Research Involving Human Subjects, and the

procedures were designed according to the guidelines and with the approval of the ethics committee of the Faculty of

Engineering, Information and Systems at University of Tsukuba, Japan.

In the proposed stimulus-driven spatial auditory BCI paradigm, 25 Japanese syllabary characters were used (half of

the full set of hiragana characters). The sound recordings were obtained from a sound dataset constructed of female

natural voice recordings and available for research purposes from [7]. The auditory stimuli were delivered from five

distinct spatial locations using loudspeakers positioned in a row in front of the user’s head, as depicted in Figure 3.

In order to manage the spatial sound distribution and precise presentation to evoke the time aligned P300 responses,

an in-house multimedia application was developed in a MAX environment [8]. The application communicated with

the EEG acquisition, processing and classification environment BCI2000 [9] using a User Datagram Protocol (UDP)

network.
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Fig. 2. The two-step input Japanese syllabary (hiragana) BCI-speller paradigm diagram. In the first step, the user chooses one of the subsets by

attending to spatially distributed sounds. In the second step, the sounds in the spatial locations are replaced with those in the new subset.

Each user first conducted a short psychophysical test with a button press behavioural response to confirm under-

standing of the experiment set-up. Next, the EEG online BCI protocol experiments were conducted. In the EEG

experiments, each user was instructed to spell a sequence of Japanese syllabary (hiragana) characters presented in

random order, as in the classic P300 response-based oddball paradigm [1]. The following two types of experiment

sessions were conducted with each user in the EEG experiments:

Training session: Using only the five Japanese vowels (a, i, u, e, and o), in a simple single-step spelling set-up, EEG

data was collected in order to train the BCI classifier to discriminate the P300 responses (a binary classification

of target versus non-target brainwave evoked responses).

Copy spelling test session: The research target two-step input Japanese syllabary speller paradigm test sessions were

conducted online using the classifier trained in the preceding single-step run. As a task in the test experiments,

five Japanese words (sakana, kisetu, tesuto, nekutai, and shiitake) were used for spelling in syllabary mode

(sa–ka–na, ki–se–tsu, te–su–to, ne–ku–ta-i, and shi–i–ta–ke).

The single-step spelling mode was used in the training session in order to collect more quickly the necessary set of

P300 responses for the successful training of the BCI classifier. The user only spelled a single string of the vowels, a,
i, u, e, and o in 20-trial averaging mode in order to collect a representative set of responses for the classifier training.

The final, 25 character-based two-step input procedure was based on the initial selection of a representative letter of a

subset, defining the second step. In the second step, the final choice was made from the subset, as shown in the system

diagram depicted in Figure 2.

During the online BCI experiments, the EEG signals were captured with eight active electrodes g.LADYbird by

g.tec Medical Instruments GmbH, Austria, connected to an EEG amplifier vAmp by Brain Products GmbH, Germany.

The electrodes were attached to the following head locations Cz, CPz, P1, P2, P3, P4, F3 and F4, as in the 10/10

extended international system [10] (see Figure 3 with a user wearing the EEG cap connected to the amplifier during an

experiment). The ground and reference electrodes were attached at FCz and the left earlobe head location, respectively.

The captured online EEG signals were processed by the in-house enhanced BCI2000 application [11,12], using an

SWLDA classifier with features drawn from 0 ∼ 1000 ms ERP intervals. The sampling frequency was set at 500 Hz,

a high-pass filter at 0.1 Hz and the low-pass filter at 40 Hz, with an electric power line interference rejection notch

filter set in a band of 48 ∼ 52 Hz.
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Fig. 3. The experiment environment in which the spatial auditory BCI-speller paradigm trials were conducted using the BCI2000 software [9] to

capture and classify the brainwaves. The spatial accosting environment was created using the loudspeakers depicted in the photograph and managed

with a MAX programme developed in-house. The BCI user depicted is wearing an EEG cap with active electrodes g.LADYbird by g.tec Medical

Instruments GmbH, Austria, connected to an amplifier vAmp by Brain Products GmbH, Germany.

The sound stimuli were presented randomly with an inter-stimulus interval (ISI) set at 300 ms. Each sound stimulus

had a length of 300 ms. The brainwave response signals (ERPs) in each classification step were averaged 20 times (in

the classifier training sessions) and only 10 times (in the two-step input spelling paradigm tests).

3. Results

This section presents and discusses the results obtained from the EEG experiments conducted with the five partic-

ipating users in the proposed two-step input spatial auditory BCI-speller paradigm.

The grand mean averaged ERP responses obtained from the five users are depicted in Figure 4 in the form of a

time series, and in Figure 5 as area under the curve (AUC) and head topography plots. The P300 response is clearly

depicted for target responses (purple lines in the figures) in the ranges of 400 ∼ 600 ms, as can be seen in Figure 4.

In the AUC score graph in Figure 5, the target versus non-target response distributions analysis resulted in clear and

possibly separable differences, including in the latency range of 400 ∼ 600 ms. These latencies clearly support BCI

classification using the SWLDA classifier.

The two-step input BCI-speller accuracy results of the five participating users are summarized in Table 1. The

maximum achievements even result in 100% scores for three of the five users. However, 0% scores are also observed,

which are clearly a sign of the interface usage difficulty. The averaged scores of all the subjects are above the two-step

input BCI-speller theoretical chance level of 4% (see bottom row in Table 1).

4. Conclusions

In this paper, we report the results obtained with a two step input Japanese syllabary BCI-speller paradigm using

25 characters as a pilot study before the application of the full 50-character hiragana set.
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Fig. 4. The grand mean averaged ERP brain responses of all the users participating in the online BCI experiments, collected in the training sessions.

The purple lines depict the ERPs for targets; (note the clear P300 positive deflections after about 400 ms and lasting until about 600 ms in this

study.) The blue lines represent the averaged brainwaves for non-targets.

The results obtained allowed the five participating users to spell short words using two steps, as reported in the

Table 1. The mean results of all the users were above the theoretical chance levels, and three of the five managed to

obtain perfect results. However, zero accuracies were also observed.

The preliminary yet encouraging results presented call for more research into two-step input spatial auditory BCI-

speller paradigms. The next research steps will include the spatial auditory stimulus optimization for handicapped or

bedridden subjects, who cannot utilize a full surround sound acoustic environment. We will also extend the interface

to the full set of 50 characters.

We plan to continue this research in order to apply the method in an online BCI application for patients suffering

from locked-in syndrome.
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Fig. 5. Grand mean averaged ERP and AUC scores leading to final classification results for the participants. The panels in the left column present

the head topographies at the maximum and minimum AUC scores as obtained from the bottom right panel. The top right panel presents averaged

ERP responses to the target and the middle panel to the non-target stimuli, respectively. The bottom right panel depicts the AUC analysis results

of the target versus non-target response distribution differences.
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Table 1. Spelling accuracies of the two-step input Japanese syllabary paradigm obtained from the online BCI experiments with a theoretical chance

level of 4%

Spelling accuracy of the users

Spelled syllables Run #1 #2 #3 #4 #5

sa-ka-na #1 0.0% 33.3% 33.3% 0.0% 33.3%

#2 0.0% 0.0% 33.3% 0.0% 100.0%

ki-se-tsu #1 66.7% 0.0% 33.3% 0.0% 66.7%

#2 33.3% 0.0% 66.6% 33.3% 66.7%

te-su-to #1 66.7% 33.0% 33.3% 33.3% 33.3%

#2 66.7% 33.0% 100.0% 0.0% 66.7%

ne-ku-ta-i #1 25.0% 50.0% 100.0% 0.0% 50.0%

#2 100.0% 0.0% 75.0% 0.0% 50.0%

shi-i-ta-ke #1 50.0% 0.0% 100.0% 25.0% 75.0%

#2 75.0% 25.0% 75.0% 0.0% 75.0%

Averaged scores: 48.3% 17.5% 65.0% 9.2% 61.2%
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