
Performance Evaluation of Acoustic Scene
Classification Using DNN-GMM and

Frame-Concatenated Acoustic Features
Gen Takahashi∗, Takeshi Yamada∗, Nobutaka Ono† and Shoji Makino∗

∗ University of Tsukuba, Japan
† National Institute of Informatics / SOKENDAI, Japan

Email: g.takahashi@mmlab.cs.tsukuba.ac.jp

Abstract—We previously proposed a method of acoustic scene
classification using a deep neural network-Gaussian mixture
model (DNN-GMM) and frame-concatenated acoustic features.
It was submitted to the Detection and Classification of Acoustic
Scenes and Events (DCASE) 2016 Challenge and was ranked
eighth among 49 algorithms. In the proposed method, acoustic
features in temporally distant frames were concatenated to
capture their temporal relationship. The experimental results
indicated that the classification accuracy is improved by increas-
ing the number of concatenated frames. On the other hand,
the frame concatenation interval, which is the interval with
which the frames used for frame concatenation are selected,
is another important parameter. In our previous method, the
frame concatenation interval was fixed to 100 ms. In this paper,
we optimize the number of concatenated frames and the frame
concatenation interval for the previously proposed method. As
a result, it was confirmed that the classification accuracy of the
method was improved by 2.61% in comparison with the result
submitted to the DCASE 2016.

I. INTRODUCTION

Attempts have been made to automatically recognize human
behavior and surrounding circumstances. This technology is
applicable to monitoring elderly people, the auto-tagging of
multimedia contents and life-log collection. Acoustic event
detection and acoustic scene classification have been focused
on as fundamental technologies used in these systems. Acous-
tic event detection detects acoustic events including sound
signals and their timestamps, where acoustic events are a
single sound emitted from one sound source, such as door
opening, coughing and mouse clicking. On the other hand,
acoustic scene classification classifies the place or situation
where the acoustic sound was recorded. The length of an
acoustic sound is typically on the order of 10 s, and types
of sounds include those of buses, parks and crowds. In this
research, we focus on acoustic scene classification.

The Detection and Classification of Acoustic Scenes and
Events (DCASE) 2013 [1] is a workshop on acoustic event
detection and acoustic scene classification. Tasks involving
acoustic scene classification and acoustic event detection are
prepared at the DCASE 2013. In the methods proposed for
acoustic scene classification [2][3], mel frequency spectral
coefficients (MFCCs), the mel frequency spectrum and recur-
rence quantification analysis (RQA) have been used as features
and a Gaussian mixture model (GMM) and a support vector

machine (SVM) have been used as classifiers. The resulting
classification accuracy was at most 70%.

On the other hand, deep neural networks (DNNs), which
have a multilayer neural network, have recently been actively
investigated. In general, a DNN tends to fall into a local
solution and requires an unrealistic learning time. However,
a pre-training method [4] that gives appropriate initial values
and high-speed computation on a graphics processing unit
(GPU) have been established. Because of this, DNNs are
now being applied in various classification problems. For
speech recognition, a DNN-hidden Markov model (HMM),
which combines a DNN and an HMM, has been proposed
[4]. The probability distribution in an HMM is approximately
represented by a GMM. On the other hand, it is precisely
represented by the DNN in a DNN-HMM. It was reported that
the performance of speech recognition is markedly improved
using a DNN-HMM [4].

Previously, we proposed a method of acoustic scene classi-
fication using a DNN-GMM and frame-concatenated acoustic
features [5]. It was submitted to the DCASE 2016 Chal-
lenge [6] and was ranked eighth among 49 algorithms. In
the proposed method, features in temporally distant frames
were concatenated to capture their temporal relationship. The
experimental results indicated that the classification accuracy
is improved by increasing the number of concatenated frames.
On the other hand, the frame concatenation interval, which is
the interval with which the frames used for frame concate-
nation are selected, is another important parameter. In our
method, the frame concatenation interval was fixed to 100
ms. In this paper, we optimize the number of concatenated
frames and the frame concatenation interval of the previously
proposed method.

II. PROPOSED METHOD

A. Process flow of the proposed method

Figure 1 shows the process flow of the previously pro-
posed method. We assume two input channels because the
acoustic data in the DCASE 2016 had two channels. First,
we compute acoustic features (the MFCCs and its first and
second differences) in each time frame for both the left
and right channels. MFCCs are a representation of frequency
characteristics considering human auditory characteristics. The
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Fig. 1. Process flow.
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Fig. 2. Example of a DNN-GMM.

features used in our method are similar as those in the baseline
system of the DCASE 2016. Next, we concatenate acoustic
features in each frame and channel, which we will describe
in Sect. II-C. Finally, we perform acoustic scene classification
by inputting the high-dimensional acoustic features obtained
in this manner into the DNN-GMM. We describe the DNN-
GMM below.

B. DNN-GMM

Figure 2 shows an example of a DNN-GMM. A DNN-
GMM consists of multilayered neural network and GMMs
corresponding to individual acoustic scenes. A DNN-GMM
is basically the same as a DNN-HMM but a GMM (a one-
state HMM without a state transition) is used instead of an
HMM.

Acoustic scene classification is the problem of classifying
an acoustic scene ŝ from a time series of features X. ŝ is
expressed as

ŝ = argmax
sk

P (sk|X), (1)

where sk is an individual acoustic scene. By transforming
P (sk|X) in this equation using Bayes’ theorem, the following

equation is obtained:

P (sk|X) =
P (X|sk)
P (X)

P (sk). (2)

Since P (X) is independent of sk, P (X) can be regarded as a
constant. Also, if we assume that the probability of appearance
of each acoustic scene has a uniform distribution, we also can
ignore P (sk). Therefore, Equation (1) becomes

ŝ = argmax
sk

P (X|sk). (3)

A GMM is often used in acoustic scene classification as a
model for solving Equation (3). Let xt and stk be the feature
vector and the state at time frame t, respectively, then P (X|sk)
can be obtained using a GMM as follows:

P (X|sk) =
∏
t

P (xt|stk)P (stk|st−1
k ). (4)

This represents the probability that the series of features X
is generated from the GMM of the acoustic scene sk. It is
generally difficult to obtain the true distribution of the output
probability P (x|sk); thus, the GMM represents it by the
following Gaussian mixture distribution:

p(x|sk) =
I∑

i=1

πiN(x|µi,Σi), (5)

where N(·) is a normal distribution, and µi and Σi are the
mean and variance of the normal distribution, respectively.
Also, I is the number of distributions used for mixing and πi

is the weight for each distribution. A DNN-GMM represents
this output probability using a DNN instead of a Gaussian
mixture distribution. To express the output probability using
a DNN, P (xt|stk) in Equation (4) is transformed by Bayes’
theorem to obtain

p(xt|stk) =
P (stk|xt)

P (stk)
P (xt). (6)

Since P (xt) is independent of sk, P (xt) can be regarded as a
constant. Also, if we assume that the probability of appearance
of each acoustic scene has a uniform distribution, P (stk) can
also be ignored. The DNN and GMM are integrated by setting
the input vector of the DNN to xt in Equation (6) and each
node of the output layer to P (stk|xt).

We describe the learning method of the DNN-GMM adopted
in this paper. First, we perform supervised learning of each
acoustic scene model using a conventional GMM. Next, using
this GMM, we make training data for DNN consisting of
the features in each frame of each training data and the
state number of the GMM. In the case of acoustic scene
classification, one acoustic sound file corresponds to one
acoustic scene, allowing this step to be simplified. Then, the
initial parameters of the DNN are determined by unsupervised
pre-training [7]. In the pre-training, each layer is regarded
as a restricted Boltzmann machine (RBM) and the training
is performed using the contrastive divergence (CD) method.
Finally, we perform fine-tuning, which is supervised training
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Fig. 3. Example of the time frame concatenation (n = 3 and m = 100 ms).

using training data. In the fine-tuning, we add a softmax layer
initialized using a random seed and perform backpropagation
using the stochastic gradient descent (SGD) method.

C. Feature concatenation

In the case of acoustic scene classification, the relationship
between sounds that are more temporally distant than those
involved in speech recognition is considered to be involved in
the classification. Therefore, improvement in the classification
accuracy can be expected by concatenating such features.
Furthermore, we concatenate the features of the left and right
channels in each time frame to capture the spatial information.
We use the above features as the input into the DNN-GMM.
Here we describe the concrete process of frame concatenation.
We concatenate acoustic features in each frame with those in
several temporally distant frames before and after the frame
for both the left and right channels. There are two important
parameters in this process. One is the number of concatenated
frames n and the other is the frame concatenation interval m.
We concatenate n frames before and after each frame at an
interval of m ms, including the current frame. Figure 3 shows
an example of the time frame concatenation. When n and m
are set to 3 and 100 ms, the three frames are concatenated as
shown in Figure 3. On the other hand, when m is changed
to 20 ms, the eleven frames must be concatenated. The
dimensions of the feature then increase about by four times.
This would have a negative effect to train the classifier. By
using n and m, we can capture the relationship of temporally
distant frames without increasing the dimensions of the feature
significantly.

III. EVALUATION

A. Experimental conditions

In this experiment, we evaluated the effectiveness of our
method using the development dataset and evaluation dataset
provided by the DCASE 2016 Challenge. Table I gives an
overview of this dataset. The dataset contains 15 acoustic
scenes, for example, bus, restaurant and park. Each scene has
78 sound data in the development dataset and 26 sound data in
the evaluation dataset, each of which is a stereo signal with a
duration of 30 s. The evaluation dataset has open sound data,
which are different from the sound data of the development
dataset. The sampling frequency is 44.1 kHz and the number
of quantization bits is 16.

TABLE I
OVERVIEW OF THE DEVELOPMENT DATASET AND THE EVALUATION

DATASET.

# of scenes 15
# of sound data of 1170
development dataset （=15 scenes×78 data）
# of sound data of 390
evaluation dataset (=15 scenes×26 data)
data length 30 s
# of channels 2 (left and right)
sampling frequency 44.1 kHz
quantization bits 16 bit

TABLE II
CONDITIONS OF THE ACOUSTIC FEATURES AND THE DNN-GMM.

feature

20th-order MFCCs
+∆+∆∆

(60 dimensions)
×n frames
×2 channels

frame length 40 ms
frame period 20 ms
# of concatenated 1, 3, 5, 7frames n
frame concatenation 20, 100, 200,
interval m (ms) 500, 1000, 2000
# of hidden layers 2, 3, 4, 5
dimension of 256, 512, 1024, 2048hidden layer
dimension of 120×ninput layer
dimension of 15output layer

Table II shows the conditions of the acoustic features and
the DNN-GMM. The features are based on a total of 60
dimensions of 20th-order MFCCs and their first and second
differences. The time frame length and frame period in the
frame analysis are 40 and 20 ms, respectively, which are the
same as those used in the baseline system of the DCASE
2016 Challenge. By the concatenation of n frames and two
channels, the dimensions of the features become 20 × 3 ×
n (frame)× 2 (ch). The frames used for frame concatenation
are selected at m ms intervals. In this experiment, the number
of concatenated frames n is set to 1, 3, 5 or 7, and the frame
concatenation interval m is set to 20, 100, 200, 500, 1000 or
2000 ms.

The number of hidden layers of the DNN (excluding the
input layer and softmax layer) is set to 2, 3, 4 or 5, and the
dimension of each hidden layer is constant and set to 256, 512,
1024 or 2048. We performed the pre-training processing on the
RBM of the hidden layer using the CD-1 method and on the
RBM of the input layer using the CD-2 method. We set the
learning rate of the RBM to 0.4, the learning rate of the DNN
to 0.008 and the dropout rate to 0.0 on the basis of the results
of a preliminary experiment. In the training of the classifier, we
first performed four fold cross-validation (data open, acoustic
scene closed) on the development dataset and optimized the
number of layers of the DNN and the dimension of the hidden
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Fig. 4. Results of the DCASE 2016 Challenge [9].

TABLE III
CLASSIFICATION ACCURACY FOR EACH COMBINATION OF n AND m, WITH

THE NUMBER OF HIDDEN LAYERS AND THE DIMENSION OF THE HIDDEN
LAYERS OPTIMIZED FOR THE DEVELOPMENT DATASET IN PARENTHESES.

1 3 5 7

20 ms
84.59

(3, 1024)
85.13

(2, 2048)
85.13

(2, 1024)
85.47

(3, 1024)

100 ms �

86.28
(2, 1024)

86.00
(2, 2048)

84.49
(3, 512)

200 ms �

85.26
(2, 512)

86.62
(2, 2048)

85.64
(3, 2048)

500 ms �

86.97
(3, 2048)

85.23
(2, 2048)

84.92
(2, 1024)

1000 ms �

85.36
(3, 512)

82.69
(2, 256)

84.10
(2, 1024)

2000 ms �

83.97
(2, 512)

83.49
(2, 1024)

82.69
(2, 256)

�

�

layer, with a fixed random seed for initialization of the softmax
layer. Then, using the parameters, we trained the classifier
of which we used all the acoustic data in the development
dataset for the training, with each of ten different random
seeds for initialization of the softmax layer. We evaluated the
effectiveness of the method using the trained classifier and the
evaluation dataset. We used the Kaldi toolkit [8] to build our
system.

B. Results

Table III shows the results of the experiment. The columns
are the time frame concatenation interval m and the rows
are the number of concatenated frames n. Each classification
accuracy is 　 the average of the classification accuracies
obtained for the ten different random seeds for initialization of
the softmax layer. The standard deviation of the classification
accuracies obtained for the ten different random seeds was at
most 1.1% in each combination of n and m. The number of
hidden layers and the dimension of the hidden layer optimized
for development dataset are written in parentheses. We can see
that the classification accuracy of our method varies with n
and m. The highest average accuracy of 86.97% was obtained
when n = 3 and m = 500 ms, which is 2.38% higher than
that when n = 1 (no frame concatenation). This demonstrates
the effect of using the concatenated acoustic feature. In Table
III, classification accuracies of more than 85.0%, written in

TABLE IV
CLASSIFICATION ACCURACY FOR EACH SOUND SCENE USING THE

BASELINE SYSTEM, THE PREVIOUSLY PROPOSED METHOD (n = 1) AND
THE OPTIMIZED METHOD (n = 3, m = 500 MS).

method Previously proposed 

method	 � � 1

Optimized method

� � 3,� � 500scene

residential_area 83.46% 87.31%

city_center 85.00% 86.15%

beach 89.62% 90.38%

park 91.92% 91.92%

home 88.46% 86.54%

forest_path 95.77% 95.00%

bus 96.54% 100.00%

grocery_store 89.23% 97.31%

café/restaurant 43.46% 58.85%

car 100.00% 100.00%

train 47.69% 57.31%

tram 100.00% 100.00%

metro_station 88.46% 85.77%

office 100.00% 100.00%

library 69.23% 66.54%

italics, were obtained when n was 5 or less and m was 500
ms or less. On the other hand, the classification accuracy was
significantly reduced when n or m was too high.

Next, Figure 4 summarizes the results of the DCASE 2016
Challenge [9]. The orange, green and yellow bars in this figure
represent the baseline system of the DCASE 2016 Challenge,
the proposed method (n = 5, m = 100 ms) submitted to the
DCASE 2016 Challenge (note that the features are irreversibly
compressed) and the optimized method (n = 3, m = 500
ms), respectively. The classification accuracy of the optimized
method (n = 3, m = 500 ms) was improved by 9.77%
compared with the baseline system. This illustrates the effect
of using both DNN-GMM and concatenated acoustic features.
The best classification accuracy of our method (n = 3,
m = 500 ms) in the ten random seeds was 88.21% and
was improved by 2.61% compared with that of the proposed
method (n = 5 and m = 100 ms), and was ranked third among
the 49 algorithms.
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Fig. 5. Confusion matrix of the optimized method (n = 3, m = 500 ms) ,
which is generated by counting the classification results obtained for all the
ten random seeds.

Finally, Table IV shows the classification accuracy for each
sound scene. The column and row show the sound scene and
the method, respectively. Our method (n = 3, m = 500 ms) is
greatly improved for grocery store, cafe/restaurant and train
compared with the previously proposed method (n = 1). The
sounds in grocery store, cafe/restaurant and train are loud and
unstationary with large temporal changes, including music and
speech. Figure 5 is the confusion matrix of the optimized
method (n = 3, m = 500 ms), which is generated by counting
the classification results obtained for all the ten random
seeds. The columns and rows show the target sound scene
and the classified result, respectively. From Figure 5, many
classification errors for cafe/restaurant, train and library can be
observed. For example, the sound data in cafe/restaurant are
often incorrectly classified as grocery store, since the sound

data in both sound scenes are similar. Therefore, improvement
of the classification accuracy for these sound scenes is required
in the future.

IV. CONCLUSION

In this paper, we optimized the number of concatenated
frames and the frame concatenation interval for the previously
proposed method. We carried out an experiment using the
development dataset and the evaluation dataset of the DCASE
2016 Challenge. It was found that by setting the number of
concatenated frames n to 5 or less and the frame concatenation
interval m to 500 ms or less, high classification accuracy was
obtained relatively stably. Also, the classification accuracy of
sound scenes having large temporal changes was improved.
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