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Abstract: To ensure a satisfactory QoE (Quality of Experience) and facilitate system design in speech recognition 
services, it is essential to establish a method that can be used to efficiently investigate recognition performance in 
different noise environments. Previously, we proposed a performance estimation method using the PESQ (Perceptual 
Evaluation of Speech Quality) as a measure of speech distortion. However, there is the problem that the accuracy of 
acoustic models used for speech recognition affects the relationship between the recognition performance and the 
distortion value. To solve this problem, we propose a novel performance estimation method considering the accuracy of 
acoustic models. Experimental results confirmed that the proposed method gives accurate estimates of the recognition 
performance for different sets of acoustic models, when using the recognition error rate for clean speech as a measure of 
the accuracy of acoustic models. 
Keywords: performance estimation, noisy speech recognition, acoustic model 
 
1. Introduction 

In recent years, speech recognition technology has 
been considerably improved by applying a statistical 
framework. However, current speech recognition 
systems still have the serious problem that their 
recognition performance is degraded in the presence of 
ambient noise. The degree of the performance 
degradation depends on the nature of ambient noise. To 
ensure a satisfactory QoE (Quality of Experience) and 
facilitate system design in speech recognition services, it 
is essential to establish a method that can be used to 
efficiently investigate recognition performance in 
different noise environments. 

One typical approach is to collect noisy speech data in 
a target noise environment and then perform a 
recognition experiment using the data. However, this 
requires a skilled engineer and a lot of time. An 
alternative approach is to estimate the recognition 
performance based on a distortion value, which 
represents the spectral distortion between the noisy 
speech and its original clean version [1, 2, 3]. 

Previously, we proposed a performance estimation 
method using the PESQ (Perceptual Evaluation of 
Speech Quality) [4] as a measure of speech distortion. In 
this method, an estimator, which is the function of the 
distortion value, is preliminarily obtained by 
approximating the relationship between the recognition 
performance and the distortion value. The recognition 
performance is then estimated by substituting the 

distortion value in the estimator. However, there is the 
problem that the accuracy of acoustic models used for 
speech recognition affects the relationship between the 
recognition performance and the distortion value. This 
means that each individual set of acoustic models 
requires the special estimator. It is, however, 
labor-intensive and time-consuming. 

To solve this problem, we propose a novel 
performance estimation method considering the accuracy 
of acoustic models. In the proposed method, an estimator, 
which is the function of both the distortion value and the 
accuracy of acoustic models, is introduced. It can 
estimate the recognition performance by giving both the 
distortion value and the accuracy of acoustic models, and 
can provide the special estimator for each individual set 
of acoustic models by giving only the accuracy of 
acoustic models. We evaluate the effectiveness of the 
proposed method by an experiment using different sets 
of acoustic models. 
 
2. Proposed method 

Fig. 1 illustrates the overview of the recognition 
performance estimation. First the distortion value that 
represents the spectral distortion between the noisy 
speech and its original clean version is calculated. Then 
the recognition performance is estimated by using the 
estimator expressed in the following form [3]. 
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Figure 2: Relationship between the constant a in the 
special estimator and the recognition error rate for clean 
speech. 
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Figure 1: Overview of the recognition performance 
estimation. 
 
where y and x represent the estimated recognition 
performance and the distortion value, respectively. The 
constants a, b, and c correspond to the recognition 
performance for clean speech, the slope of the 
performance degradation, and the robustness against the 
spectral distortion, respectively. These constants are 
determined by approximating the relationship between 
the recognition performance and the distortion value for 
various noise environments. However, as mentioned 
above, the recognition performance varies according to 
the accuracy of acoustic models used for speech 
recognition. Each individual set of acoustic models 
therefore requires the special estimator. 

 
the linear function of the recognition error rate for clean 
speech. The similar tendency was observed for the 
constants b and c. We therefore decided to use the 
following estimator. 
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where the constants p· and q· are determined by 
approximating the relationship between the recognition 
performance, the distortion value, and the recognition 
error rate for clean speech for various noise 
environments and sets of acoustic models. To solve this problem, we propose the estimator 

expressed in the following form.  
3. Evaluation 

In this section, we evaluate the effectiveness of the 
proposed method. The noisy speech data generated by 
artificially adding noise data to speech data are used for 
determining the constants of the estimator. In this 
experiment, we use the PESQ as a spectral distortion 
measure. The PESQ calculates the spectral distortion and 
outputs the value as the PESQ score ranging from −0.5 
to 4.5. Note that the higher the PESQ score, the smaller 
the spectral distortion. 
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where α is the accuracy of acoustic models. In Eq. (2), 
each constant in Eq. (1) is replaced by the function of α. 
This is motivated by the hypothesis that the accuracy of 
acoustic models affects only the constants in Eq. (1). The 
proposed estimator can estimate the recognition 
performance by giving both the distortion value and the 
accuracy of acoustic models, and can provide the special 
estimator for each individual set of acoustic models by 
giving only the accuracy of acoustic models. 

 
3.1. Determination of the estimator’s constants 

In this paper, we adopt the recognition error rate for 
clean speech as a measure of the accuracy of acoustic 
models. Fig. 2 shows the relationship between the 
constant a in the special estimator and the recognition 
error rate for clean speech. Each point corresponds to 
one of the five sets of acoustic models. 

To determine the constants of the proposed estimator, 
we conducted an isolated-word recognition experiment. 
We used the Tohoku University-Matsushita spoken word 
database [5], consisting of 3285 isolated words (railway 
station names). The dictionary size is 3285. 

We prepared in-car noise, exhibition hall noise, train 
noise, and elevator hall noise included in the Denshikyo It can be seen that the constant a can be represented by 
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 Figure 3: Special estimator for each individual set of 
acoustic models obtained by substituting only the 
corresponding the recognition error rate for clean speech 
in Eq. (3). 

Figure 4: Relationship between the true word accuracy 
and the estimated word accuracy in the closed test. 
 

 error rate for clean speech in Eq. (4). This corresponds to 
a so-called closed test in the sense that the test data are 
the same as those used for determining Eq. (4). Fig. 4 
shows the relationship between the true word accuracy 
and the estimated word accuracy. The coefficient of 
determination and the RMSE (Root Mean Square Error) 
were 0.99 and 2.8, respectively. We can see that the 
proposed estimator gives accurate estimates of the word 
accuracy. 

noise database [6] as ambient noise. The noisy speech 
data were generated by artificially adding the noise data 
to the speech data at six different values of SNR (20, 15, 
10, 5, 0, −5 dB). In this experiment, no noise reduction 
algorithm is used. We used five sets of acoustic models: 
four sets of monophone models with 4, 8, 16, and 64 
Gaussians per state, respectively, and one set of triphone 
models [7]. The feature vector has 25 components 
consisting of 12 MFCCs, 12 delta MFCCs, and a delta 
log-power. 

An additional evaluation was conducted for an open 
test (a cross-validation test). The four sets of acoustic 
models are used for determining the estimator’s 
constants and the remaining one set for testing. We 
estimated the recognition performance of each individual 
set of acoustic models in this manner. Fig. 5 shows the 
relationship between the true word accuracy and the 
estimated word accuracy. The coefficient of 
determination and the RMSE were 0.98 and 3.1, 
respectively. We can see again that the proposed 
estimator gives accurate estimates of the word accuracy. 

Using the word accuracy (the recognition rate), the 
PESQ score, and the recognition error rate for clean 
speech obtained for each individual set of acoustic 
models mentioned above, we determined the constants of 
the proposed estimator. 
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4. Conclusion 

Previously, we proposed a performance estimation 
method using a spectral distortion measure. However, 
there is the problem that the accuracy of acoustic models 
affects the relationship between the recognition 
performance and the distortion value. To solve this 
problem, this paper proposed a novel performance 
estimation method considering the accuracy of acoustic 
models. We conducted an experiment to evaluate the 
effectiveness of the proposed method. As a result, it was 

In Eq. (4), α is the recognition error rate for clean speech. 
Fig. 3 illustrates the special estimator for each individual 
set of acoustic models obtained by substituting only the 
corresponding recognition error rate for clean speech in 
Eq. (4). 
 
3.2. Evaluation 

We then estimated the recognition performance by 
substituting both the PESQ score and the recognition 
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confirmed that the proposed method gives accurate 
estimates of the recognition performance for different 
sets of acoustic models, when using the recognition error 
rate for clean speech as a measure of the accuracy of 
acoustic models. As future work, we plan to estimate the 
recognition performance considering both the accuracy 
of acoustic models and recognition task complexity [8]. 
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